Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans

Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biotechnology 2015-10, Vol.57 (10), p.931-938
Hauptverfasser: Gullón, Sonia, Vicente, Rebeca L., Valverde, José R., Marín, Silvia, Mellado, Rafael P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 10
container_start_page 931
container_title Molecular biotechnology
container_volume 57
creator Gullón, Sonia
Vicente, Rebeca L.
Valverde, José R.
Marín, Silvia
Mellado, Rafael P.
description Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.
doi_str_mv 10.1007/s12033-015-9883-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722184213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709711735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</originalsourceid><addsrcrecordid>eNqNkc1O3DAUha2qqMC0D9ANRGLDJvT6N_ayGgGthARimLXlSRwwzcTBdhDz9vWQoapYVF352PrOvTo-CH3FcIYBqm8RE6C0BMxLJWUWH9AB5lyVQIF_zBoqWgqQfB8dxvgIQDBn9BPaJ4IAYYodoF_nL0Png-vvi_Rgiwtrolu5zqVN4dvXp4Wti1s_Jlskv70Em-VN8Mm6PhbL-Ga9M2nHub5YpGCH5Neb2saic8-uMX38jPZa00X7ZXfO0PLi_G7-o7y6vvw5_35V1oyoVHKlKF0ZEFbJBhMhBGOSMRBccsoaIHQFpm0pSFbJNketmoaztjFS1MSAojN0Os0dgn8abUx67WJtu8701o9R44oQLBnB9D9QUBXGFeUZPXmHPvox9DnIK0U4Z_lzZwhPVB18jMG2eghubcJGY9Db0vRUms6l6W1pGrLnaDd5XK1t88fx1lIGyATEYduUDX-t_sfU48nUGq_NfXBRLxcEsADATMic6TdTgKiD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709255454</pqid></control><display><type>article</type><title>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gullón, Sonia ; Vicente, Rebeca L. ; Valverde, José R. ; Marín, Silvia ; Mellado, Rafael P.</creator><creatorcontrib>Gullón, Sonia ; Vicente, Rebeca L. ; Valverde, José R. ; Marín, Silvia ; Mellado, Rafael P.</creatorcontrib><description>Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.</description><identifier>ISSN: 1073-6085</identifier><identifier>EISSN: 1559-0305</identifier><identifier>DOI: 10.1007/s12033-015-9883-0</identifier><identifier>PMID: 26202494</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>alpha-Amylases - chemistry ; alpha-Amylases - genetics ; alpha-Amylases - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry ; Biological Techniques ; Biotechnology ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Enzymes ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Gram-positive bacteria ; Human Genetics ; Models, Molecular ; Mutation ; Original Paper ; Peptides ; Protein Science ; Protein Sorting Signals ; Protein Structure, Secondary ; Proteins ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Signal Transduction ; Streptomyces lividans ; Streptomyces lividans - genetics ; Streptomyces lividans - metabolism</subject><ispartof>Molecular biotechnology, 2015-10, Vol.57 (10), p.931-938</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</citedby><cites>FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12033-015-9883-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12033-015-9883-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26202494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gullón, Sonia</creatorcontrib><creatorcontrib>Vicente, Rebeca L.</creatorcontrib><creatorcontrib>Valverde, José R.</creatorcontrib><creatorcontrib>Marín, Silvia</creatorcontrib><creatorcontrib>Mellado, Rafael P.</creatorcontrib><title>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</title><title>Molecular biotechnology</title><addtitle>Mol Biotechnol</addtitle><addtitle>Mol Biotechnol</addtitle><description>Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.</description><subject>alpha-Amylases - chemistry</subject><subject>alpha-Amylases - genetics</subject><subject>alpha-Amylases - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biological Techniques</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Enzymes</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Gram-positive bacteria</subject><subject>Human Genetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Original Paper</subject><subject>Peptides</subject><subject>Protein Science</subject><subject>Protein Sorting Signals</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Streptomyces lividans</subject><subject>Streptomyces lividans - genetics</subject><subject>Streptomyces lividans - metabolism</subject><issn>1073-6085</issn><issn>1559-0305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1O3DAUha2qqMC0D9ANRGLDJvT6N_ayGgGthARimLXlSRwwzcTBdhDz9vWQoapYVF352PrOvTo-CH3FcIYBqm8RE6C0BMxLJWUWH9AB5lyVQIF_zBoqWgqQfB8dxvgIQDBn9BPaJ4IAYYodoF_nL0Png-vvi_Rgiwtrolu5zqVN4dvXp4Wti1s_Jlskv70Em-VN8Mm6PhbL-Ga9M2nHub5YpGCH5Neb2saic8-uMX38jPZa00X7ZXfO0PLi_G7-o7y6vvw5_35V1oyoVHKlKF0ZEFbJBhMhBGOSMRBccsoaIHQFpm0pSFbJNketmoaztjFS1MSAojN0Os0dgn8abUx67WJtu8701o9R44oQLBnB9D9QUBXGFeUZPXmHPvox9DnIK0U4Z_lzZwhPVB18jMG2eghubcJGY9Db0vRUms6l6W1pGrLnaDd5XK1t88fx1lIGyATEYduUDX-t_sfU48nUGq_NfXBRLxcEsADATMic6TdTgKiD</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Gullón, Sonia</creator><creator>Vicente, Rebeca L.</creator><creator>Valverde, José R.</creator><creator>Marín, Silvia</creator><creator>Mellado, Rafael P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151001</creationdate><title>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</title><author>Gullón, Sonia ; Vicente, Rebeca L. ; Valverde, José R. ; Marín, Silvia ; Mellado, Rafael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alpha-Amylases - chemistry</topic><topic>alpha-Amylases - genetics</topic><topic>alpha-Amylases - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biological Techniques</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Enzymes</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Gram-positive bacteria</topic><topic>Human Genetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Original Paper</topic><topic>Peptides</topic><topic>Protein Science</topic><topic>Protein Sorting Signals</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Streptomyces lividans</topic><topic>Streptomyces lividans - genetics</topic><topic>Streptomyces lividans - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gullón, Sonia</creatorcontrib><creatorcontrib>Vicente, Rebeca L.</creatorcontrib><creatorcontrib>Valverde, José R.</creatorcontrib><creatorcontrib>Marín, Silvia</creatorcontrib><creatorcontrib>Mellado, Rafael P.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gullón, Sonia</au><au>Vicente, Rebeca L.</au><au>Valverde, José R.</au><au>Marín, Silvia</au><au>Mellado, Rafael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</atitle><jtitle>Molecular biotechnology</jtitle><stitle>Mol Biotechnol</stitle><addtitle>Mol Biotechnol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>57</volume><issue>10</issue><spage>931</spage><epage>938</epage><pages>931-938</pages><issn>1073-6085</issn><eissn>1559-0305</eissn><abstract>Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26202494</pmid><doi>10.1007/s12033-015-9883-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-6085
ispartof Molecular biotechnology, 2015-10, Vol.57 (10), p.931-938
issn 1073-6085
1559-0305
language eng
recordid cdi_proquest_miscellaneous_1722184213
source MEDLINE; Springer Nature - Complete Springer Journals
subjects alpha-Amylases - chemistry
alpha-Amylases - genetics
alpha-Amylases - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biochemistry
Biological Techniques
Biotechnology
Cell Biology
Chemistry
Chemistry and Materials Science
Enzymes
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - genetics
Glycoside Hydrolases - metabolism
Gram-positive bacteria
Human Genetics
Models, Molecular
Mutation
Original Paper
Peptides
Protein Science
Protein Sorting Signals
Protein Structure, Secondary
Proteins
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Signal Transduction
Streptomyces lividans
Streptomyces lividans - genetics
Streptomyces lividans - metabolism
title Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Feasibility%20of%20the%20Sec%20Route%20to%20Secrete%20Proteins%20Using%20the%20Tat%20Route%20in%20Streptomyces%20lividans&rft.jtitle=Molecular%20biotechnology&rft.au=Gull%C3%B3n,%20Sonia&rft.date=2015-10-01&rft.volume=57&rft.issue=10&rft.spage=931&rft.epage=938&rft.pages=931-938&rft.issn=1073-6085&rft.eissn=1559-0305&rft_id=info:doi/10.1007/s12033-015-9883-0&rft_dat=%3Cproquest_cross%3E1709711735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709255454&rft_id=info:pmid/26202494&rfr_iscdi=true