Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans
Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relative...
Gespeichert in:
Veröffentlicht in: | Molecular biotechnology 2015-10, Vol.57 (10), p.931-938 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 938 |
---|---|
container_issue | 10 |
container_start_page | 931 |
container_title | Molecular biotechnology |
container_volume | 57 |
creator | Gullón, Sonia Vicente, Rebeca L. Valverde, José R. Marín, Silvia Mellado, Rafael P. |
description | Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route. |
doi_str_mv | 10.1007/s12033-015-9883-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722184213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709711735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</originalsourceid><addsrcrecordid>eNqNkc1O3DAUha2qqMC0D9ANRGLDJvT6N_ayGgGthARimLXlSRwwzcTBdhDz9vWQoapYVF352PrOvTo-CH3FcIYBqm8RE6C0BMxLJWUWH9AB5lyVQIF_zBoqWgqQfB8dxvgIQDBn9BPaJ4IAYYodoF_nL0Png-vvi_Rgiwtrolu5zqVN4dvXp4Wti1s_Jlskv70Em-VN8Mm6PhbL-Ga9M2nHub5YpGCH5Neb2saic8-uMX38jPZa00X7ZXfO0PLi_G7-o7y6vvw5_35V1oyoVHKlKF0ZEFbJBhMhBGOSMRBccsoaIHQFpm0pSFbJNketmoaztjFS1MSAojN0Os0dgn8abUx67WJtu8701o9R44oQLBnB9D9QUBXGFeUZPXmHPvox9DnIK0U4Z_lzZwhPVB18jMG2eghubcJGY9Db0vRUms6l6W1pGrLnaDd5XK1t88fx1lIGyATEYduUDX-t_sfU48nUGq_NfXBRLxcEsADATMic6TdTgKiD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709255454</pqid></control><display><type>article</type><title>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gullón, Sonia ; Vicente, Rebeca L. ; Valverde, José R. ; Marín, Silvia ; Mellado, Rafael P.</creator><creatorcontrib>Gullón, Sonia ; Vicente, Rebeca L. ; Valverde, José R. ; Marín, Silvia ; Mellado, Rafael P.</creatorcontrib><description>Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.</description><identifier>ISSN: 1073-6085</identifier><identifier>EISSN: 1559-0305</identifier><identifier>DOI: 10.1007/s12033-015-9883-0</identifier><identifier>PMID: 26202494</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>alpha-Amylases - chemistry ; alpha-Amylases - genetics ; alpha-Amylases - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry ; Biological Techniques ; Biotechnology ; Cell Biology ; Chemistry ; Chemistry and Materials Science ; Enzymes ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Gram-positive bacteria ; Human Genetics ; Models, Molecular ; Mutation ; Original Paper ; Peptides ; Protein Science ; Protein Sorting Signals ; Protein Structure, Secondary ; Proteins ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Signal Transduction ; Streptomyces lividans ; Streptomyces lividans - genetics ; Streptomyces lividans - metabolism</subject><ispartof>Molecular biotechnology, 2015-10, Vol.57 (10), p.931-938</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</citedby><cites>FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12033-015-9883-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12033-015-9883-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26202494$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gullón, Sonia</creatorcontrib><creatorcontrib>Vicente, Rebeca L.</creatorcontrib><creatorcontrib>Valverde, José R.</creatorcontrib><creatorcontrib>Marín, Silvia</creatorcontrib><creatorcontrib>Mellado, Rafael P.</creatorcontrib><title>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</title><title>Molecular biotechnology</title><addtitle>Mol Biotechnol</addtitle><addtitle>Mol Biotechnol</addtitle><description>Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.</description><subject>alpha-Amylases - chemistry</subject><subject>alpha-Amylases - genetics</subject><subject>alpha-Amylases - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biological Techniques</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Enzymes</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Gram-positive bacteria</subject><subject>Human Genetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Original Paper</subject><subject>Peptides</subject><subject>Protein Science</subject><subject>Protein Sorting Signals</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Streptomyces lividans</subject><subject>Streptomyces lividans - genetics</subject><subject>Streptomyces lividans - metabolism</subject><issn>1073-6085</issn><issn>1559-0305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1O3DAUha2qqMC0D9ANRGLDJvT6N_ayGgGthARimLXlSRwwzcTBdhDz9vWQoapYVF352PrOvTo-CH3FcIYBqm8RE6C0BMxLJWUWH9AB5lyVQIF_zBoqWgqQfB8dxvgIQDBn9BPaJ4IAYYodoF_nL0Png-vvi_Rgiwtrolu5zqVN4dvXp4Wti1s_Jlskv70Em-VN8Mm6PhbL-Ga9M2nHub5YpGCH5Neb2saic8-uMX38jPZa00X7ZXfO0PLi_G7-o7y6vvw5_35V1oyoVHKlKF0ZEFbJBhMhBGOSMRBccsoaIHQFpm0pSFbJNketmoaztjFS1MSAojN0Os0dgn8abUx67WJtu8701o9R44oQLBnB9D9QUBXGFeUZPXmHPvox9DnIK0U4Z_lzZwhPVB18jMG2eghubcJGY9Db0vRUms6l6W1pGrLnaDd5XK1t88fx1lIGyATEYduUDX-t_sfU48nUGq_NfXBRLxcEsADATMic6TdTgKiD</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Gullón, Sonia</creator><creator>Vicente, Rebeca L.</creator><creator>Valverde, José R.</creator><creator>Marín, Silvia</creator><creator>Mellado, Rafael P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151001</creationdate><title>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</title><author>Gullón, Sonia ; Vicente, Rebeca L. ; Valverde, José R. ; Marín, Silvia ; Mellado, Rafael P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-59933ba06e98d12666448440658534d023b0aff308478f0307dd54fda86c2a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>alpha-Amylases - chemistry</topic><topic>alpha-Amylases - genetics</topic><topic>alpha-Amylases - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biological Techniques</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Enzymes</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Gram-positive bacteria</topic><topic>Human Genetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Original Paper</topic><topic>Peptides</topic><topic>Protein Science</topic><topic>Protein Sorting Signals</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Streptomyces lividans</topic><topic>Streptomyces lividans - genetics</topic><topic>Streptomyces lividans - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gullón, Sonia</creatorcontrib><creatorcontrib>Vicente, Rebeca L.</creatorcontrib><creatorcontrib>Valverde, José R.</creatorcontrib><creatorcontrib>Marín, Silvia</creatorcontrib><creatorcontrib>Mellado, Rafael P.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gullón, Sonia</au><au>Vicente, Rebeca L.</au><au>Valverde, José R.</au><au>Marín, Silvia</au><au>Mellado, Rafael P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans</atitle><jtitle>Molecular biotechnology</jtitle><stitle>Mol Biotechnol</stitle><addtitle>Mol Biotechnol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>57</volume><issue>10</issue><spage>931</spage><epage>938</epage><pages>931-938</pages><issn>1073-6085</issn><eissn>1559-0305</eissn><abstract>Streptomyces lividans uses mainly two pathways to target secretory proteins to the cytoplasmic membrane. The major pathway (Sec pathway) transports pre-proteins using the signal recognition particle, and the minor Tat pathway is responsible for the secretion using a folded conformation of a relatively low number of proteins. The signal peptides of the Sec-dependent alpha-amylase and the Tat-dependent agarase were interchanged and fused in-frame to the corresponding mature part of the other enzyme. Alpha-amylase was unable to use the Tat route when fused to the agarase signal peptide, while agarase used the Sec route when it was targeted by the alpha-amylase signal peptide. In addition to the signal peptide some yet unidentified parts of the secreted proteins may play a role in selecting the secretory route. Structure predictions for the Tat- and Sec-dependent proteins suggest that less structured proteins are more likely to be candidates for the Tat route.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26202494</pmid><doi>10.1007/s12033-015-9883-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-6085 |
ispartof | Molecular biotechnology, 2015-10, Vol.57 (10), p.931-938 |
issn | 1073-6085 1559-0305 |
language | eng |
recordid | cdi_proquest_miscellaneous_1722184213 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | alpha-Amylases - chemistry alpha-Amylases - genetics alpha-Amylases - metabolism Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Biochemistry Biological Techniques Biotechnology Cell Biology Chemistry Chemistry and Materials Science Enzymes Glycoside Hydrolases - chemistry Glycoside Hydrolases - genetics Glycoside Hydrolases - metabolism Gram-positive bacteria Human Genetics Models, Molecular Mutation Original Paper Peptides Protein Science Protein Sorting Signals Protein Structure, Secondary Proteins Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Signal Transduction Streptomyces lividans Streptomyces lividans - genetics Streptomyces lividans - metabolism |
title | Exploring the Feasibility of the Sec Route to Secrete Proteins Using the Tat Route in Streptomyces lividans |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Feasibility%20of%20the%20Sec%20Route%20to%20Secrete%20Proteins%20Using%20the%20Tat%20Route%20in%20Streptomyces%20lividans&rft.jtitle=Molecular%20biotechnology&rft.au=Gull%C3%B3n,%20Sonia&rft.date=2015-10-01&rft.volume=57&rft.issue=10&rft.spage=931&rft.epage=938&rft.pages=931-938&rft.issn=1073-6085&rft.eissn=1559-0305&rft_id=info:doi/10.1007/s12033-015-9883-0&rft_dat=%3Cproquest_cross%3E1709711735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709255454&rft_id=info:pmid/26202494&rfr_iscdi=true |