Calibrating the impact of root orientation on root quantification using ground-penetrating radar

BACKGROUND AND AIMS: Ground-penetrating radar (GPR) has provided a non-invasive means for field root investigation. However, the horizontal cross angle (x) of root orientation intersecting a survey line considerably impacts the amplitude area (A) reflected from a root and impairs the accuracy of GPR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2015-10, Vol.395 (1-2), p.289-305
Hauptverfasser: Guo, Li, Wu, Yuan, Chen, Jin, Hirano, Yasuhiro, Tanikawa, Toko, Li, Wentao, Cui, Xihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 1-2
container_start_page 289
container_title Plant and soil
container_volume 395
creator Guo, Li
Wu, Yuan
Chen, Jin
Hirano, Yasuhiro
Tanikawa, Toko
Li, Wentao
Cui, Xihong
description BACKGROUND AND AIMS: Ground-penetrating radar (GPR) has provided a non-invasive means for field root investigation. However, the horizontal cross angle (x) of root orientation intersecting a survey line considerably impacts the amplitude area (A) reflected from a root and impairs the accuracy of GPR-based root quantification. Prediction of A(90°) (the value of A scanning at x = 90°) from multiple A(x) measurements could correct such impact. Previous method of A(90°) prediction focused on target roots at field point scale. The aim of this study is to develop a method to predict A(90°) at field plot scale. METHODS: A(90°) was predicted by a pair of A(x) measured at two arbitrary scanning lines together with an estimated soil background amplitude area. Three independent datasets were employed to test the proposed method. The field experiment included radar data collected for six roots of Caragana microphylla in a sandy-clay soil at four cross angles (30°, 45°, 60°, and 90°). The sand box experiment included radar data for 12 dowels at 13 cross angles (0° to 180°, in 15° steps). The simulation experiment included A(x) of 46 simulated roots at 13 cross angles (0° to 180°, in 15° steps). RESULTS: For all experiments, A(90°) was accurately estimated. Root orientation could also be determined. After correcting the impact of cross angle, the accuracy of root diameter estimation improved. Correlation coefficient between actual and estimated root diameters increased from 0.77 to 0.81, with RMSE declining from 9.53 to 7.05 mm. CONCLUSIONS: A method of correcting the influence of root orientation on root GPR signal at the field plot scale has been established. This method enhances root quantification using GPR.
doi_str_mv 10.1007/s11104-015-2563-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722183247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A429562585</galeid><jstor_id>43872476</jstor_id><sourcerecordid>A429562585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-259d565191a550a6e5b2b59f6e57c548c963a99ea0dd3b66e6461cca375b7f2d3</originalsourceid><addsrcrecordid>eNp9UcGOFCEQ7RhNHFc_wIOxEy9eei2ggea4mazuJpt40E28IU1Dy6QHZoE--PfW2BtjPBhICqree1TxmuY1gUsCID8UQgj0HRDeUS5Yp540O8Il6zgw8bTZATDagVTfnjcvSjnA-U7Ervm-N0sYs6khzm394dpwPBlb2-TbnBLGHFysWE6xxf0797CaWIMPdkuv5cydc1rj1J1cdPVRLpvJ5JfNM2-W4l49xovm_uP11_1Nd_f50-3-6q6zXELFptXEBSeKGM7BCMdHOnLl8SAt7werBDNKOQPTxEYhnOgFsdYwyUfp6cQumveb7imnh9WVqo-hWLcsJrq0Fk0kpWRgtJcIffcP9JDWHLE7RJGecwYSEHW5oWazOB2iTziXxTW5Y7ApOh8wf9VTxQXlA0cC2Qg2p1Ky8_qUw9Hkn5qAPpukN5M0mqTPJmmFHLpxCmLj7PJfrfyH9GYjHUpN-c8rPRskjiew_nare5O0mXMo-v4LRQEA_AMYGPsFglmnMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1714553070</pqid></control><display><type>article</type><title>Calibrating the impact of root orientation on root quantification using ground-penetrating radar</title><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Guo, Li ; Wu, Yuan ; Chen, Jin ; Hirano, Yasuhiro ; Tanikawa, Toko ; Li, Wentao ; Cui, Xihong</creator><creatorcontrib>Guo, Li ; Wu, Yuan ; Chen, Jin ; Hirano, Yasuhiro ; Tanikawa, Toko ; Li, Wentao ; Cui, Xihong</creatorcontrib><description>BACKGROUND AND AIMS: Ground-penetrating radar (GPR) has provided a non-invasive means for field root investigation. However, the horizontal cross angle (x) of root orientation intersecting a survey line considerably impacts the amplitude area (A) reflected from a root and impairs the accuracy of GPR-based root quantification. Prediction of A(90°) (the value of A scanning at x = 90°) from multiple A(x) measurements could correct such impact. Previous method of A(90°) prediction focused on target roots at field point scale. The aim of this study is to develop a method to predict A(90°) at field plot scale. METHODS: A(90°) was predicted by a pair of A(x) measured at two arbitrary scanning lines together with an estimated soil background amplitude area. Three independent datasets were employed to test the proposed method. The field experiment included radar data collected for six roots of Caragana microphylla in a sandy-clay soil at four cross angles (30°, 45°, 60°, and 90°). The sand box experiment included radar data for 12 dowels at 13 cross angles (0° to 180°, in 15° steps). The simulation experiment included A(x) of 46 simulated roots at 13 cross angles (0° to 180°, in 15° steps). RESULTS: For all experiments, A(90°) was accurately estimated. Root orientation could also be determined. After correcting the impact of cross angle, the accuracy of root diameter estimation improved. Correlation coefficient between actual and estimated root diameters increased from 0.77 to 0.81, with RMSE declining from 9.53 to 7.05 mm. CONCLUSIONS: A method of correcting the influence of root orientation on root GPR signal at the field plot scale has been established. This method enhances root quantification using GPR.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-015-2563-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biomass ; Biomedical and Life Sciences ; Caragana ; Caragana microphylla ; Charcoal ; Correlation coefficient ; data collection ; Ecology ; field experimentation ; Flowers &amp; plants ; Ground penetrating radar ; Life Sciences ; Observations ; Plant Physiology ; Plant Sciences ; Plant-soil relationships ; prediction ; Radar ; Radar systems ; Regular Article ; Roots ; sand ; sandy clay soils ; Soil Science &amp; Conservation ; Soils ; surveys</subject><ispartof>Plant and soil, 2015-10, Vol.395 (1-2), p.289-305</ispartof><rights>Springer Science+Business Media 2015</rights><rights>Springer International Publishing Switzerland 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-259d565191a550a6e5b2b59f6e57c548c963a99ea0dd3b66e6461cca375b7f2d3</citedby><cites>FETCH-LOGICAL-c570t-259d565191a550a6e5b2b59f6e57c548c963a99ea0dd3b66e6461cca375b7f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43872476$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43872476$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Hirano, Yasuhiro</creatorcontrib><creatorcontrib>Tanikawa, Toko</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Cui, Xihong</creatorcontrib><title>Calibrating the impact of root orientation on root quantification using ground-penetrating radar</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>BACKGROUND AND AIMS: Ground-penetrating radar (GPR) has provided a non-invasive means for field root investigation. However, the horizontal cross angle (x) of root orientation intersecting a survey line considerably impacts the amplitude area (A) reflected from a root and impairs the accuracy of GPR-based root quantification. Prediction of A(90°) (the value of A scanning at x = 90°) from multiple A(x) measurements could correct such impact. Previous method of A(90°) prediction focused on target roots at field point scale. The aim of this study is to develop a method to predict A(90°) at field plot scale. METHODS: A(90°) was predicted by a pair of A(x) measured at two arbitrary scanning lines together with an estimated soil background amplitude area. Three independent datasets were employed to test the proposed method. The field experiment included radar data collected for six roots of Caragana microphylla in a sandy-clay soil at four cross angles (30°, 45°, 60°, and 90°). The sand box experiment included radar data for 12 dowels at 13 cross angles (0° to 180°, in 15° steps). The simulation experiment included A(x) of 46 simulated roots at 13 cross angles (0° to 180°, in 15° steps). RESULTS: For all experiments, A(90°) was accurately estimated. Root orientation could also be determined. After correcting the impact of cross angle, the accuracy of root diameter estimation improved. Correlation coefficient between actual and estimated root diameters increased from 0.77 to 0.81, with RMSE declining from 9.53 to 7.05 mm. CONCLUSIONS: A method of correcting the influence of root orientation on root GPR signal at the field plot scale has been established. This method enhances root quantification using GPR.</description><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Caragana</subject><subject>Caragana microphylla</subject><subject>Charcoal</subject><subject>Correlation coefficient</subject><subject>data collection</subject><subject>Ecology</subject><subject>field experimentation</subject><subject>Flowers &amp; plants</subject><subject>Ground penetrating radar</subject><subject>Life Sciences</subject><subject>Observations</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plant-soil relationships</subject><subject>prediction</subject><subject>Radar</subject><subject>Radar systems</subject><subject>Regular Article</subject><subject>Roots</subject><subject>sand</subject><subject>sandy clay soils</subject><subject>Soil Science &amp; Conservation</subject><subject>Soils</subject><subject>surveys</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UcGOFCEQ7RhNHFc_wIOxEy9eei2ggea4mazuJpt40E28IU1Dy6QHZoE--PfW2BtjPBhICqree1TxmuY1gUsCID8UQgj0HRDeUS5Yp540O8Il6zgw8bTZATDagVTfnjcvSjnA-U7Ervm-N0sYs6khzm394dpwPBlb2-TbnBLGHFysWE6xxf0797CaWIMPdkuv5cydc1rj1J1cdPVRLpvJ5JfNM2-W4l49xovm_uP11_1Nd_f50-3-6q6zXELFptXEBSeKGM7BCMdHOnLl8SAt7werBDNKOQPTxEYhnOgFsdYwyUfp6cQumveb7imnh9WVqo-hWLcsJrq0Fk0kpWRgtJcIffcP9JDWHLE7RJGecwYSEHW5oWazOB2iTziXxTW5Y7ApOh8wf9VTxQXlA0cC2Qg2p1Ky8_qUw9Hkn5qAPpukN5M0mqTPJmmFHLpxCmLj7PJfrfyH9GYjHUpN-c8rPRskjiew_nare5O0mXMo-v4LRQEA_AMYGPsFglmnMg</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Guo, Li</creator><creator>Wu, Yuan</creator><creator>Chen, Jin</creator><creator>Hirano, Yasuhiro</creator><creator>Tanikawa, Toko</creator><creator>Li, Wentao</creator><creator>Cui, Xihong</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20151001</creationdate><title>Calibrating the impact of root orientation on root quantification using ground-penetrating radar</title><author>Guo, Li ; Wu, Yuan ; Chen, Jin ; Hirano, Yasuhiro ; Tanikawa, Toko ; Li, Wentao ; Cui, Xihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-259d565191a550a6e5b2b59f6e57c548c963a99ea0dd3b66e6461cca375b7f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Caragana</topic><topic>Caragana microphylla</topic><topic>Charcoal</topic><topic>Correlation coefficient</topic><topic>data collection</topic><topic>Ecology</topic><topic>field experimentation</topic><topic>Flowers &amp; plants</topic><topic>Ground penetrating radar</topic><topic>Life Sciences</topic><topic>Observations</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plant-soil relationships</topic><topic>prediction</topic><topic>Radar</topic><topic>Radar systems</topic><topic>Regular Article</topic><topic>Roots</topic><topic>sand</topic><topic>sandy clay soils</topic><topic>Soil Science &amp; Conservation</topic><topic>Soils</topic><topic>surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Wu, Yuan</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><creatorcontrib>Hirano, Yasuhiro</creatorcontrib><creatorcontrib>Tanikawa, Toko</creatorcontrib><creatorcontrib>Li, Wentao</creatorcontrib><creatorcontrib>Cui, Xihong</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Li</au><au>Wu, Yuan</au><au>Chen, Jin</au><au>Hirano, Yasuhiro</au><au>Tanikawa, Toko</au><au>Li, Wentao</au><au>Cui, Xihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibrating the impact of root orientation on root quantification using ground-penetrating radar</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>395</volume><issue>1-2</issue><spage>289</spage><epage>305</epage><pages>289-305</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><abstract>BACKGROUND AND AIMS: Ground-penetrating radar (GPR) has provided a non-invasive means for field root investigation. However, the horizontal cross angle (x) of root orientation intersecting a survey line considerably impacts the amplitude area (A) reflected from a root and impairs the accuracy of GPR-based root quantification. Prediction of A(90°) (the value of A scanning at x = 90°) from multiple A(x) measurements could correct such impact. Previous method of A(90°) prediction focused on target roots at field point scale. The aim of this study is to develop a method to predict A(90°) at field plot scale. METHODS: A(90°) was predicted by a pair of A(x) measured at two arbitrary scanning lines together with an estimated soil background amplitude area. Three independent datasets were employed to test the proposed method. The field experiment included radar data collected for six roots of Caragana microphylla in a sandy-clay soil at four cross angles (30°, 45°, 60°, and 90°). The sand box experiment included radar data for 12 dowels at 13 cross angles (0° to 180°, in 15° steps). The simulation experiment included A(x) of 46 simulated roots at 13 cross angles (0° to 180°, in 15° steps). RESULTS: For all experiments, A(90°) was accurately estimated. Root orientation could also be determined. After correcting the impact of cross angle, the accuracy of root diameter estimation improved. Correlation coefficient between actual and estimated root diameters increased from 0.77 to 0.81, with RMSE declining from 9.53 to 7.05 mm. CONCLUSIONS: A method of correcting the influence of root orientation on root GPR signal at the field plot scale has been established. This method enhances root quantification using GPR.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11104-015-2563-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2015-10, Vol.395 (1-2), p.289-305
issn 0032-079X
1573-5036
language eng
recordid cdi_proquest_miscellaneous_1722183247
source SpringerNature Journals; JSTOR Archive Collection A-Z Listing
subjects Biomass
Biomedical and Life Sciences
Caragana
Caragana microphylla
Charcoal
Correlation coefficient
data collection
Ecology
field experimentation
Flowers & plants
Ground penetrating radar
Life Sciences
Observations
Plant Physiology
Plant Sciences
Plant-soil relationships
prediction
Radar
Radar systems
Regular Article
Roots
sand
sandy clay soils
Soil Science & Conservation
Soils
surveys
title Calibrating the impact of root orientation on root quantification using ground-penetrating radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibrating%20the%20impact%20of%20root%20orientation%20on%20root%20quantification%20using%20ground-penetrating%20radar&rft.jtitle=Plant%20and%20soil&rft.au=Guo,%20Li&rft.date=2015-10-01&rft.volume=395&rft.issue=1-2&rft.spage=289&rft.epage=305&rft.pages=289-305&rft.issn=0032-079X&rft.eissn=1573-5036&rft_id=info:doi/10.1007/s11104-015-2563-9&rft_dat=%3Cgale_proqu%3EA429562585%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1714553070&rft_id=info:pmid/&rft_galeid=A429562585&rft_jstor_id=43872476&rfr_iscdi=true