The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency

Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-09, Vol.49 (18), p.10778-10789
Hauptverfasser: Leone, Thomas G, Anderson, James E, Davis, Richard S, Iqbal, Asim, Reese, Ronald A, Shelby, Michael H, Studzinski, William M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10789
container_issue 18
container_start_page 10778
container_title Environmental science & technology
container_volume 49
creator Leone, Thomas G
Anderson, James E
Davis, Richard S
Iqbal, Asim
Reese, Ronald A
Shelby, Michael H
Studzinski, William M
description Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate “tank-to-wheel” estimates of this type are necessary for “well-to-wheel” analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.
doi_str_mv 10.1021/acs.est.5b01420
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722179235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3816539711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a431t-f593607fdf83e099c40363816243b1835aed365a1a25a37ab37c807ffa871ed43</originalsourceid><addsrcrecordid>eNqNkc1LwzAYh4MoOqdnbxLwIrjOJG_TpEcZ8wMEwQ_wVrI0mdUumU172H9v6qaCIHgKhOf3JO_7Q-iIkjEljJ4rHcYmtGM-IzRlZAsNKGck4ZLTbTQghEKSQ_a8h_ZDeCWEMCByF-2xjIHgIAeofnwxeGqt0S32Fk_8YtmYECrv8L1qKz_Cl52p8Z1ulTOfV24-wsqVeNq-KOfrGHGtcTHt8MNSNW_JzdxVbS-YunnlPu2VrozTqwO0Y1UdzOHmHKKny-nj5Dq5vbu6mVzcJioF2iaWxz8TYUsrwZA81ymBDCTNWAozKoErU0LGFVWMKxBqBkLLyFslBTVlCkN0uvYuG__exf0UiypoU9dxBt-FggrGqMgZ8H-glAmRQS4ievILffVd4-IgPcVzSYD3wvM1pRsfQmNssWyqhWpWBSVF31kROyv69KazmDjeeLvZwpTf_FdJEThbA33y580_dB_0LZ95</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1715980355</pqid></control><display><type>article</type><title>The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency</title><source>ACS Publications</source><source>MEDLINE</source><creator>Leone, Thomas G ; Anderson, James E ; Davis, Richard S ; Iqbal, Asim ; Reese, Ronald A ; Shelby, Michael H ; Studzinski, William M</creator><creatorcontrib>Leone, Thomas G ; Anderson, James E ; Davis, Richard S ; Iqbal, Asim ; Reese, Ronald A ; Shelby, Michael H ; Studzinski, William M</creatorcontrib><description>Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate “tank-to-wheel” estimates of this type are necessary for “well-to-wheel” analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b01420</identifier><identifier>PMID: 26237538</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon dioxide ; Carbon Dioxide - analysis ; Emissions control ; Energy efficiency ; Ethanol ; Ethanol - chemistry ; Gasoline ; Greenhouse Effect - prevention &amp; control ; Motor Vehicles ; Octanes ; United States ; Vehicle emissions ; Vehicle Emissions - analysis</subject><ispartof>Environmental science &amp; technology, 2015-09, Vol.49 (18), p.10778-10789</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 15, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a431t-f593607fdf83e099c40363816243b1835aed365a1a25a37ab37c807ffa871ed43</citedby><cites>FETCH-LOGICAL-a431t-f593607fdf83e099c40363816243b1835aed365a1a25a37ab37c807ffa871ed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b01420$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b01420$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26237538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leone, Thomas G</creatorcontrib><creatorcontrib>Anderson, James E</creatorcontrib><creatorcontrib>Davis, Richard S</creatorcontrib><creatorcontrib>Iqbal, Asim</creatorcontrib><creatorcontrib>Reese, Ronald A</creatorcontrib><creatorcontrib>Shelby, Michael H</creatorcontrib><creatorcontrib>Studzinski, William M</creatorcontrib><title>The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate “tank-to-wheel” estimates of this type are necessary for “well-to-wheel” analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.</description><subject>Carbon dioxide</subject><subject>Carbon Dioxide - analysis</subject><subject>Emissions control</subject><subject>Energy efficiency</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Gasoline</subject><subject>Greenhouse Effect - prevention &amp; control</subject><subject>Motor Vehicles</subject><subject>Octanes</subject><subject>United States</subject><subject>Vehicle emissions</subject><subject>Vehicle Emissions - analysis</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LwzAYh4MoOqdnbxLwIrjOJG_TpEcZ8wMEwQ_wVrI0mdUumU172H9v6qaCIHgKhOf3JO_7Q-iIkjEljJ4rHcYmtGM-IzRlZAsNKGck4ZLTbTQghEKSQ_a8h_ZDeCWEMCByF-2xjIHgIAeofnwxeGqt0S32Fk_8YtmYECrv8L1qKz_Cl52p8Z1ulTOfV24-wsqVeNq-KOfrGHGtcTHt8MNSNW_JzdxVbS-YunnlPu2VrozTqwO0Y1UdzOHmHKKny-nj5Dq5vbu6mVzcJioF2iaWxz8TYUsrwZA81ymBDCTNWAozKoErU0LGFVWMKxBqBkLLyFslBTVlCkN0uvYuG__exf0UiypoU9dxBt-FggrGqMgZ8H-glAmRQS4ievILffVd4-IgPcVzSYD3wvM1pRsfQmNssWyqhWpWBSVF31kROyv69KazmDjeeLvZwpTf_FdJEThbA33y580_dB_0LZ95</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Leone, Thomas G</creator><creator>Anderson, James E</creator><creator>Davis, Richard S</creator><creator>Iqbal, Asim</creator><creator>Reese, Ronald A</creator><creator>Shelby, Michael H</creator><creator>Studzinski, William M</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope></search><sort><creationdate>20150915</creationdate><title>The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency</title><author>Leone, Thomas G ; Anderson, James E ; Davis, Richard S ; Iqbal, Asim ; Reese, Ronald A ; Shelby, Michael H ; Studzinski, William M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a431t-f593607fdf83e099c40363816243b1835aed365a1a25a37ab37c807ffa871ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon dioxide</topic><topic>Carbon Dioxide - analysis</topic><topic>Emissions control</topic><topic>Energy efficiency</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Gasoline</topic><topic>Greenhouse Effect - prevention &amp; control</topic><topic>Motor Vehicles</topic><topic>Octanes</topic><topic>United States</topic><topic>Vehicle emissions</topic><topic>Vehicle Emissions - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leone, Thomas G</creatorcontrib><creatorcontrib>Anderson, James E</creatorcontrib><creatorcontrib>Davis, Richard S</creatorcontrib><creatorcontrib>Iqbal, Asim</creatorcontrib><creatorcontrib>Reese, Ronald A</creatorcontrib><creatorcontrib>Shelby, Michael H</creatorcontrib><creatorcontrib>Studzinski, William M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leone, Thomas G</au><au>Anderson, James E</au><au>Davis, Richard S</au><au>Iqbal, Asim</au><au>Reese, Ronald A</au><au>Shelby, Michael H</au><au>Studzinski, William M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-09-15</date><risdate>2015</risdate><volume>49</volume><issue>18</issue><spage>10778</spage><epage>10789</epage><pages>10778-10789</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate “tank-to-wheel” estimates of this type are necessary for “well-to-wheel” analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26237538</pmid><doi>10.1021/acs.est.5b01420</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-09, Vol.49 (18), p.10778-10789
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1722179235
source ACS Publications; MEDLINE
subjects Carbon dioxide
Carbon Dioxide - analysis
Emissions control
Energy efficiency
Ethanol
Ethanol - chemistry
Gasoline
Greenhouse Effect - prevention & control
Motor Vehicles
Octanes
United States
Vehicle emissions
Vehicle Emissions - analysis
title The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Compression%20Ratio,%20Fuel%20Octane%20Rating,%20and%20Ethanol%20Content%20on%20Spark-Ignition%20Engine%20Efficiency&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Leone,%20Thomas%20G&rft.date=2015-09-15&rft.volume=49&rft.issue=18&rft.spage=10778&rft.epage=10789&rft.pages=10778-10789&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b01420&rft_dat=%3Cproquest_cross%3E3816539711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1715980355&rft_id=info:pmid/26237538&rfr_iscdi=true