Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model
Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH....
Gespeichert in:
Veröffentlicht in: | Journal of climate 2015-09, Vol.28 (18), p.7385-7406 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7406 |
---|---|
container_issue | 18 |
container_start_page | 7385 |
container_title | Journal of climate |
container_volume | 28 |
creator | Hutchinson, David K. England, Matthew H. Hogg, Andrew M. Snow, Kate |
description | Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH. This study examines the interhemispheric warming asymmetry in an intermediate complexity coupled climate model with eddy-permitting (0.25°) ocean resolution, and results are compared with a similar model with coarse (1°) ocean resolution. The models use a pole-to-pole 60° wide sector domain in the ocean and a 120° wide sector in the atmosphere, with Atlantic-like bathymetry and a simple land model. There is a larger high-latitude ocean temperature asymmetry in the 0.25° model compared with the 1° model, both in equilibrated control runs and in response to greenhouse warming. The larger warming asymmetry is caused by greater melting of NH sea ice in the 0.25° model, associated with faster, less viscous boundary currents transporting heat northward. The SH sea ice and heat transport response is relatively insensitive to the resolution change, since the eddy heat transport differences between the models are small compared with the mean flow heat transport. When a wind shift and intensification is applied in these warming scenarios, the warming asymmetry is further enhanced, with greater upwelling of cool water in the Southern Ocean and enhanced warming in the NH. Surface air temperatures show a substantial but lesser degree of high-latitude warming asymmetry, reflecting the sea surface warming patterns over the ocean but warming more symmetrically over the land regions. |
doi_str_mv | 10.1175/JCLI-D-15-0014.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722179177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26196003</jstor_id><sourcerecordid>26196003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-27d390ad8ba095cf2d41c1e52d9b4a7fe419ebcac93c4b123f2fdfe9dcae87d33</originalsourceid><addsrcrecordid>eNp9kctLAzEQh4MoWB93L8KCFy_RTB7N5ij1VakoqHgMaTKrW_ZRk-2h_70pFQ8ePA0M32-YmY-QE2AXAFpdPkxmU3pNQVHGQF7ADhmB4owyKfkuGbHSSFpqpfbJQUqLzPAxYyPyPO0GjJ_Y1mn5ibH2xVVaty0OcV30VfHuYlt3H0XdFa4rbkJY02fMrWHYdCf9atlgKF7QD30sHvuAzRHZq1yT8PinHpK325vXyT2dPd1NJ1cz6oUZD5TrIAxzoZw7ZpSveJDgARUPZi6drlCCwbl33ggv58BFxatQoQneYZmz4pCcb-cuY_-1wjTYfILHpnEd9qtkQXMO2oDWGT37gy76VezydpaXwAxXQoj_KNDAZQljLTPFtpSPfUoRK7uMdevi2gKzGxF2I8JeW1B2I8JCjpxuI4uUv_TL8zGYrECIb5-uhNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712481674</pqid></control><display><type>article</type><title>Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hutchinson, David K. ; England, Matthew H. ; Hogg, Andrew M. ; Snow, Kate</creator><creatorcontrib>Hutchinson, David K. ; England, Matthew H. ; Hogg, Andrew M. ; Snow, Kate</creatorcontrib><description>Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH. This study examines the interhemispheric warming asymmetry in an intermediate complexity coupled climate model with eddy-permitting (0.25°) ocean resolution, and results are compared with a similar model with coarse (1°) ocean resolution. The models use a pole-to-pole 60° wide sector domain in the ocean and a 120° wide sector in the atmosphere, with Atlantic-like bathymetry and a simple land model. There is a larger high-latitude ocean temperature asymmetry in the 0.25° model compared with the 1° model, both in equilibrated control runs and in response to greenhouse warming. The larger warming asymmetry is caused by greater melting of NH sea ice in the 0.25° model, associated with faster, less viscous boundary currents transporting heat northward. The SH sea ice and heat transport response is relatively insensitive to the resolution change, since the eddy heat transport differences between the models are small compared with the mean flow heat transport. When a wind shift and intensification is applied in these warming scenarios, the warming asymmetry is further enhanced, with greater upwelling of cool water in the Southern Ocean and enhanced warming in the NH. Surface air temperatures show a substantial but lesser degree of high-latitude warming asymmetry, reflecting the sea surface warming patterns over the ocean but warming more symmetrically over the land regions.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-15-0014.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>21st century ; Air temperature ; Asymmetry ; Atmosphere ; Atmospheric models ; Bathymetry ; Boundary currents ; Cerebral hemispheres ; Climate ; Climate change ; Climate models ; Global warming ; Greenhouse effect ; Heat ; Heat transport ; Hemispheric laterality ; Ice ; Latitude ; Marine ; Meteorology ; Modelling ; Northern Hemisphere ; Ocean circulation ; Ocean circulation models ; Ocean currents ; Ocean models ; Ocean temperature ; Ocean warming ; Oceanic climates ; Oceans ; Resolution ; Sea currents ; Sea ice ; Sea surface ; Sea surface warming ; Sea transportation ; Simulation ; Southern Hemisphere ; Surface temperature ; Surface-air temperature relationships ; Upwelling ; Water circulation ; Water temperature</subject><ispartof>Journal of climate, 2015-09, Vol.28 (18), p.7385-7406</ispartof><rights>2015 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 15, 2015</rights><rights>Copyright American Meteorological Society 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-27d390ad8ba095cf2d41c1e52d9b4a7fe419ebcac93c4b123f2fdfe9dcae87d33</citedby><cites>FETCH-LOGICAL-c396t-27d390ad8ba095cf2d41c1e52d9b4a7fe419ebcac93c4b123f2fdfe9dcae87d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26196003$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26196003$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Hutchinson, David K.</creatorcontrib><creatorcontrib>England, Matthew H.</creatorcontrib><creatorcontrib>Hogg, Andrew M.</creatorcontrib><creatorcontrib>Snow, Kate</creatorcontrib><title>Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model</title><title>Journal of climate</title><description>Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH. This study examines the interhemispheric warming asymmetry in an intermediate complexity coupled climate model with eddy-permitting (0.25°) ocean resolution, and results are compared with a similar model with coarse (1°) ocean resolution. The models use a pole-to-pole 60° wide sector domain in the ocean and a 120° wide sector in the atmosphere, with Atlantic-like bathymetry and a simple land model. There is a larger high-latitude ocean temperature asymmetry in the 0.25° model compared with the 1° model, both in equilibrated control runs and in response to greenhouse warming. The larger warming asymmetry is caused by greater melting of NH sea ice in the 0.25° model, associated with faster, less viscous boundary currents transporting heat northward. The SH sea ice and heat transport response is relatively insensitive to the resolution change, since the eddy heat transport differences between the models are small compared with the mean flow heat transport. When a wind shift and intensification is applied in these warming scenarios, the warming asymmetry is further enhanced, with greater upwelling of cool water in the Southern Ocean and enhanced warming in the NH. Surface air temperatures show a substantial but lesser degree of high-latitude warming asymmetry, reflecting the sea surface warming patterns over the ocean but warming more symmetrically over the land regions.</description><subject>21st century</subject><subject>Air temperature</subject><subject>Asymmetry</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Bathymetry</subject><subject>Boundary currents</subject><subject>Cerebral hemispheres</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Heat</subject><subject>Heat transport</subject><subject>Hemispheric laterality</subject><subject>Ice</subject><subject>Latitude</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Northern Hemisphere</subject><subject>Ocean circulation</subject><subject>Ocean circulation models</subject><subject>Ocean currents</subject><subject>Ocean models</subject><subject>Ocean temperature</subject><subject>Ocean warming</subject><subject>Oceanic climates</subject><subject>Oceans</subject><subject>Resolution</subject><subject>Sea currents</subject><subject>Sea ice</subject><subject>Sea surface</subject><subject>Sea surface warming</subject><subject>Sea transportation</subject><subject>Simulation</subject><subject>Southern Hemisphere</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Upwelling</subject><subject>Water circulation</subject><subject>Water temperature</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctLAzEQh4MoWB93L8KCFy_RTB7N5ij1VakoqHgMaTKrW_ZRk-2h_70pFQ8ePA0M32-YmY-QE2AXAFpdPkxmU3pNQVHGQF7ADhmB4owyKfkuGbHSSFpqpfbJQUqLzPAxYyPyPO0GjJ_Y1mn5ibH2xVVaty0OcV30VfHuYlt3H0XdFa4rbkJY02fMrWHYdCf9atlgKF7QD30sHvuAzRHZq1yT8PinHpK325vXyT2dPd1NJ1cz6oUZD5TrIAxzoZw7ZpSveJDgARUPZi6drlCCwbl33ggv58BFxatQoQneYZmz4pCcb-cuY_-1wjTYfILHpnEd9qtkQXMO2oDWGT37gy76VezydpaXwAxXQoj_KNDAZQljLTPFtpSPfUoRK7uMdevi2gKzGxF2I8JeW1B2I8JCjpxuI4uUv_TL8zGYrECIb5-uhNg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Hutchinson, David K.</creator><creator>England, Matthew H.</creator><creator>Hogg, Andrew M.</creator><creator>Snow, Kate</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150901</creationdate><title>Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model</title><author>Hutchinson, David K. ; England, Matthew H. ; Hogg, Andrew M. ; Snow, Kate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-27d390ad8ba095cf2d41c1e52d9b4a7fe419ebcac93c4b123f2fdfe9dcae87d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>21st century</topic><topic>Air temperature</topic><topic>Asymmetry</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Bathymetry</topic><topic>Boundary currents</topic><topic>Cerebral hemispheres</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Heat</topic><topic>Heat transport</topic><topic>Hemispheric laterality</topic><topic>Ice</topic><topic>Latitude</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Northern Hemisphere</topic><topic>Ocean circulation</topic><topic>Ocean circulation models</topic><topic>Ocean currents</topic><topic>Ocean models</topic><topic>Ocean temperature</topic><topic>Ocean warming</topic><topic>Oceanic climates</topic><topic>Oceans</topic><topic>Resolution</topic><topic>Sea currents</topic><topic>Sea ice</topic><topic>Sea surface</topic><topic>Sea surface warming</topic><topic>Sea transportation</topic><topic>Simulation</topic><topic>Southern Hemisphere</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Upwelling</topic><topic>Water circulation</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchinson, David K.</creatorcontrib><creatorcontrib>England, Matthew H.</creatorcontrib><creatorcontrib>Hogg, Andrew M.</creatorcontrib><creatorcontrib>Snow, Kate</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchinson, David K.</au><au>England, Matthew H.</au><au>Hogg, Andrew M.</au><au>Snow, Kate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model</atitle><jtitle>Journal of climate</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>28</volume><issue>18</issue><spage>7385</spage><epage>7406</epage><pages>7385-7406</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Climate model projections and observations show a faster rate of warming in the Northern Hemisphere (NH) than the Southern Hemisphere (SH). This asymmetry is partly due to faster rates of warming over the land than the ocean, and partly due to the ocean circulation redistributing heat toward the NH. This study examines the interhemispheric warming asymmetry in an intermediate complexity coupled climate model with eddy-permitting (0.25°) ocean resolution, and results are compared with a similar model with coarse (1°) ocean resolution. The models use a pole-to-pole 60° wide sector domain in the ocean and a 120° wide sector in the atmosphere, with Atlantic-like bathymetry and a simple land model. There is a larger high-latitude ocean temperature asymmetry in the 0.25° model compared with the 1° model, both in equilibrated control runs and in response to greenhouse warming. The larger warming asymmetry is caused by greater melting of NH sea ice in the 0.25° model, associated with faster, less viscous boundary currents transporting heat northward. The SH sea ice and heat transport response is relatively insensitive to the resolution change, since the eddy heat transport differences between the models are small compared with the mean flow heat transport. When a wind shift and intensification is applied in these warming scenarios, the warming asymmetry is further enhanced, with greater upwelling of cool water in the Southern Ocean and enhanced warming in the NH. Surface air temperatures show a substantial but lesser degree of high-latitude warming asymmetry, reflecting the sea surface warming patterns over the ocean but warming more symmetrically over the land regions.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-15-0014.1</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2015-09, Vol.28 (18), p.7385-7406 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1722179177 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 21st century Air temperature Asymmetry Atmosphere Atmospheric models Bathymetry Boundary currents Cerebral hemispheres Climate Climate change Climate models Global warming Greenhouse effect Heat Heat transport Hemispheric laterality Ice Latitude Marine Meteorology Modelling Northern Hemisphere Ocean circulation Ocean circulation models Ocean currents Ocean models Ocean temperature Ocean warming Oceanic climates Oceans Resolution Sea currents Sea ice Sea surface Sea surface warming Sea transportation Simulation Southern Hemisphere Surface temperature Surface-air temperature relationships Upwelling Water circulation Water temperature |
title | Interhemispheric Asymmetry of Warming in an Eddy-Permitting Coupled Sector Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interhemispheric%20Asymmetry%20of%20Warming%20in%20an%20Eddy-Permitting%20Coupled%20Sector%20Model&rft.jtitle=Journal%20of%20climate&rft.au=Hutchinson,%20David%20K.&rft.date=2015-09-01&rft.volume=28&rft.issue=18&rft.spage=7385&rft.epage=7406&rft.pages=7385-7406&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-15-0014.1&rft_dat=%3Cjstor_proqu%3E26196003%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712481674&rft_id=info:pmid/&rft_jstor_id=26196003&rfr_iscdi=true |