Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders
Purpose Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. Methods In the...
Gespeichert in:
Veröffentlicht in: | International archives of occupational and environmental health 2015-10, Vol.88 (7), p.913-923 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 923 |
---|---|
container_issue | 7 |
container_start_page | 913 |
container_title | International archives of occupational and environmental health |
container_volume | 88 |
creator | Bertram, Jens Brand, Peter Hartmann, Laura Schettgen, Thomas Kossack, Veronika Lenz, Klaus Purrio, Ellwyn Reisgen, Uwe Kraus, Thomas |
description | Purpose
Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions.
Methods
In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m
3
for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry.
Results
Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean
t
1
(0 h) 13.5 µg/L; mean
t
2
(6 h) 23.5 µg/L). Plasma results showed the same pattern but pre–post comparison did not reach significance.
Conclusions
We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days. |
doi_str_mv | 10.1007/s00420-015-1020-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722178708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3801951151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-8cdb2f4995374d3eb478052173cafc4e649969a5a254f35788d51c89e0b138483</originalsourceid><addsrcrecordid>eNqNkctu1TAQhi0EoofCA7BBltiwaMr4FidLVEGLVKmbdm05zqSkOPbBTlTxKLwtNqdchITExh5pvvl8-Ql5yeCUAei3GUByaICphkEp9COyY1LwhnHZPiY7ELJ2BTsiz3K-A2C61eIpOeJK9a2Gfke-XWyLDXSY4xLDvMY0h1saJ2r9tsxh3hZqpxUTtTSXjscT6mJYU_QeR1omN-vpgmtZbXJ0DphWemszvUc_VtU-RYc5_1CG39amWmwpC3If0-f8CXEt4zTEUEcx5efkyWR9xhcP-zG5-fD--uyiubw6_3j27rJxUqu16dw48En2vRJajgIHqTtQnGnh7OQktqXV9lZZruQklO66UTHX9QgDE53sxDF5c_CWq37ZMK9mmbND723AuGXDNC-2TsP_oIwpUb-2oK__Qu_ilkJ5SKWgrfnJQrED5VLMOeFk9mlebPpqGJiKmEPEpkRsasSmml89mLdhwfHXxM9MC8APQN7XNDH9cfQ_rd8BDSqySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710610074</pqid></control><display><type>article</type><title>Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bertram, Jens ; Brand, Peter ; Hartmann, Laura ; Schettgen, Thomas ; Kossack, Veronika ; Lenz, Klaus ; Purrio, Ellwyn ; Reisgen, Uwe ; Kraus, Thomas</creator><creatorcontrib>Bertram, Jens ; Brand, Peter ; Hartmann, Laura ; Schettgen, Thomas ; Kossack, Veronika ; Lenz, Klaus ; Purrio, Ellwyn ; Reisgen, Uwe ; Kraus, Thomas</creatorcontrib><description>Purpose
Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions.
Methods
In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m
3
for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry.
Results
Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean
t
1
(0 h) 13.5 µg/L; mean
t
2
(6 h) 23.5 µg/L). Plasma results showed the same pattern but pre–post comparison did not reach significance.
Conclusions
We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.</description><identifier>ISSN: 0340-0131</identifier><identifier>EISSN: 1432-1246</identifier><identifier>DOI: 10.1007/s00420-015-1020-7</identifier><identifier>PMID: 25596709</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Air Pollutants, Occupational - analysis ; Aluminum ; Aluminum - analysis ; Aluminum - blood ; Aluminum - urine ; Atomic absorption spectroscopy ; Biomonitoring ; Dust - analysis ; Earth and Environmental Science ; Environment ; Environmental Health ; Environmental Monitoring - methods ; Environmental Monitoring - statistics & numerical data ; Fumes ; Healthy Volunteers ; Human exposure ; Humans ; Male ; Noble Gases - toxicity ; Occupational exposure ; Occupational Exposure - analysis ; Occupational health ; Occupational Medicine/Industrial Medicine ; Original Article ; Rehabilitation ; Respiration ; Spectral analysis ; Spectrometry ; Spectrophotometry, Atomic - methods ; Welding ; Welding - methods ; Welding - statistics & numerical data ; Young Adult</subject><ispartof>International archives of occupational and environmental health, 2015-10, Vol.88 (7), p.913-923</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-8cdb2f4995374d3eb478052173cafc4e649969a5a254f35788d51c89e0b138483</citedby><cites>FETCH-LOGICAL-c475t-8cdb2f4995374d3eb478052173cafc4e649969a5a254f35788d51c89e0b138483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00420-015-1020-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00420-015-1020-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25596709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bertram, Jens</creatorcontrib><creatorcontrib>Brand, Peter</creatorcontrib><creatorcontrib>Hartmann, Laura</creatorcontrib><creatorcontrib>Schettgen, Thomas</creatorcontrib><creatorcontrib>Kossack, Veronika</creatorcontrib><creatorcontrib>Lenz, Klaus</creatorcontrib><creatorcontrib>Purrio, Ellwyn</creatorcontrib><creatorcontrib>Reisgen, Uwe</creatorcontrib><creatorcontrib>Kraus, Thomas</creatorcontrib><title>Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders</title><title>International archives of occupational and environmental health</title><addtitle>Int Arch Occup Environ Health</addtitle><addtitle>Int Arch Occup Environ Health</addtitle><description>Purpose
Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions.
Methods
In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m
3
for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry.
Results
Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean
t
1
(0 h) 13.5 µg/L; mean
t
2
(6 h) 23.5 µg/L). Plasma results showed the same pattern but pre–post comparison did not reach significance.
Conclusions
We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.</description><subject>Adult</subject><subject>Air Pollutants, Occupational - analysis</subject><subject>Aluminum</subject><subject>Aluminum - analysis</subject><subject>Aluminum - blood</subject><subject>Aluminum - urine</subject><subject>Atomic absorption spectroscopy</subject><subject>Biomonitoring</subject><subject>Dust - analysis</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental Monitoring - statistics & numerical data</subject><subject>Fumes</subject><subject>Healthy Volunteers</subject><subject>Human exposure</subject><subject>Humans</subject><subject>Male</subject><subject>Noble Gases - toxicity</subject><subject>Occupational exposure</subject><subject>Occupational Exposure - analysis</subject><subject>Occupational health</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Rehabilitation</subject><subject>Respiration</subject><subject>Spectral analysis</subject><subject>Spectrometry</subject><subject>Spectrophotometry, Atomic - methods</subject><subject>Welding</subject><subject>Welding - methods</subject><subject>Welding - statistics & numerical data</subject><subject>Young Adult</subject><issn>0340-0131</issn><issn>1432-1246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkctu1TAQhi0EoofCA7BBltiwaMr4FidLVEGLVKmbdm05zqSkOPbBTlTxKLwtNqdchITExh5pvvl8-Ql5yeCUAei3GUByaICphkEp9COyY1LwhnHZPiY7ELJ2BTsiz3K-A2C61eIpOeJK9a2Gfke-XWyLDXSY4xLDvMY0h1saJ2r9tsxh3hZqpxUTtTSXjscT6mJYU_QeR1omN-vpgmtZbXJ0DphWemszvUc_VtU-RYc5_1CG39amWmwpC3If0-f8CXEt4zTEUEcx5efkyWR9xhcP-zG5-fD--uyiubw6_3j27rJxUqu16dw48En2vRJajgIHqTtQnGnh7OQktqXV9lZZruQklO66UTHX9QgDE53sxDF5c_CWq37ZMK9mmbND723AuGXDNC-2TsP_oIwpUb-2oK__Qu_ilkJ5SKWgrfnJQrED5VLMOeFk9mlebPpqGJiKmEPEpkRsasSmml89mLdhwfHXxM9MC8APQN7XNDH9cfQ_rd8BDSqySA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bertram, Jens</creator><creator>Brand, Peter</creator><creator>Hartmann, Laura</creator><creator>Schettgen, Thomas</creator><creator>Kossack, Veronika</creator><creator>Lenz, Klaus</creator><creator>Purrio, Ellwyn</creator><creator>Reisgen, Uwe</creator><creator>Kraus, Thomas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T2</scope><scope>7T5</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U2</scope></search><sort><creationdate>20151001</creationdate><title>Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders</title><author>Bertram, Jens ; Brand, Peter ; Hartmann, Laura ; Schettgen, Thomas ; Kossack, Veronika ; Lenz, Klaus ; Purrio, Ellwyn ; Reisgen, Uwe ; Kraus, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-8cdb2f4995374d3eb478052173cafc4e649969a5a254f35788d51c89e0b138483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Air Pollutants, Occupational - analysis</topic><topic>Aluminum</topic><topic>Aluminum - analysis</topic><topic>Aluminum - blood</topic><topic>Aluminum - urine</topic><topic>Atomic absorption spectroscopy</topic><topic>Biomonitoring</topic><topic>Dust - analysis</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental Monitoring - statistics & numerical data</topic><topic>Fumes</topic><topic>Healthy Volunteers</topic><topic>Human exposure</topic><topic>Humans</topic><topic>Male</topic><topic>Noble Gases - toxicity</topic><topic>Occupational exposure</topic><topic>Occupational Exposure - analysis</topic><topic>Occupational health</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Rehabilitation</topic><topic>Respiration</topic><topic>Spectral analysis</topic><topic>Spectrometry</topic><topic>Spectrophotometry, Atomic - methods</topic><topic>Welding</topic><topic>Welding - methods</topic><topic>Welding - statistics & numerical data</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bertram, Jens</creatorcontrib><creatorcontrib>Brand, Peter</creatorcontrib><creatorcontrib>Hartmann, Laura</creatorcontrib><creatorcontrib>Schettgen, Thomas</creatorcontrib><creatorcontrib>Kossack, Veronika</creatorcontrib><creatorcontrib>Lenz, Klaus</creatorcontrib><creatorcontrib>Purrio, Ellwyn</creatorcontrib><creatorcontrib>Reisgen, Uwe</creatorcontrib><creatorcontrib>Kraus, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Safety Science and Risk</collection><jtitle>International archives of occupational and environmental health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bertram, Jens</au><au>Brand, Peter</au><au>Hartmann, Laura</au><au>Schettgen, Thomas</au><au>Kossack, Veronika</au><au>Lenz, Klaus</au><au>Purrio, Ellwyn</au><au>Reisgen, Uwe</au><au>Kraus, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders</atitle><jtitle>International archives of occupational and environmental health</jtitle><stitle>Int Arch Occup Environ Health</stitle><addtitle>Int Arch Occup Environ Health</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>88</volume><issue>7</issue><spage>913</spage><epage>923</epage><pages>913-923</pages><issn>0340-0131</issn><eissn>1432-1246</eissn><abstract>Purpose
Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions.
Methods
In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m
3
for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry.
Results
Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean
t
1
(0 h) 13.5 µg/L; mean
t
2
(6 h) 23.5 µg/L). Plasma results showed the same pattern but pre–post comparison did not reach significance.
Conclusions
We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25596709</pmid><doi>10.1007/s00420-015-1020-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-0131 |
ispartof | International archives of occupational and environmental health, 2015-10, Vol.88 (7), p.913-923 |
issn | 0340-0131 1432-1246 |
language | eng |
recordid | cdi_proquest_miscellaneous_1722178708 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adult Air Pollutants, Occupational - analysis Aluminum Aluminum - analysis Aluminum - blood Aluminum - urine Atomic absorption spectroscopy Biomonitoring Dust - analysis Earth and Environmental Science Environment Environmental Health Environmental Monitoring - methods Environmental Monitoring - statistics & numerical data Fumes Healthy Volunteers Human exposure Humans Male Noble Gases - toxicity Occupational exposure Occupational Exposure - analysis Occupational health Occupational Medicine/Industrial Medicine Original Article Rehabilitation Respiration Spectral analysis Spectrometry Spectrophotometry, Atomic - methods Welding Welding - methods Welding - statistics & numerical data Young Adult |
title | Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20biomonitoring%20of%20aluminium%20after%20a%20single,%20controlled%20manual%20metal%20arc%20inert%20gas%20welding%20process%20of%20an%20aluminium-containing%20worksheet%20in%20nonwelders&rft.jtitle=International%20archives%20of%20occupational%20and%20environmental%20health&rft.au=Bertram,%20Jens&rft.date=2015-10-01&rft.volume=88&rft.issue=7&rft.spage=913&rft.epage=923&rft.pages=913-923&rft.issn=0340-0131&rft.eissn=1432-1246&rft_id=info:doi/10.1007/s00420-015-1020-7&rft_dat=%3Cproquest_cross%3E3801951151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710610074&rft_id=info:pmid/25596709&rfr_iscdi=true |