CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma

Stromal cell-derived factor 1 (SDF-1) and its receptor, CXCR4, play an important role in tumor progression. Epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. This study aimed to investigate the roles and underlying mechanisms of SDF-1/CXCR4 axis in EMT process of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2015-12, Vol.52 (3), p.1263-1268
Hauptverfasser: Lv, Baoyu, Yang, Xiangshan, Lv, Shunzeng, Wang, Lei, Fan, Kaixi, Shi, Ranran, Wang, Fengling, Song, Huishu, Ma, Xiaochen, Tan, Xuefen, Xu, Kun, Xie, Jingjing, Wang, Guangmei, Feng, Man, Zhang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1268
container_issue 3
container_start_page 1263
container_title Molecular neurobiology
container_volume 52
creator Lv, Baoyu
Yang, Xiangshan
Lv, Shunzeng
Wang, Lei
Fan, Kaixi
Shi, Ranran
Wang, Fengling
Song, Huishu
Ma, Xiaochen
Tan, Xuefen
Xu, Kun
Xie, Jingjing
Wang, Guangmei
Feng, Man
Zhang, Li
description Stromal cell-derived factor 1 (SDF-1) and its receptor, CXCR4, play an important role in tumor progression. Epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. This study aimed to investigate the roles and underlying mechanisms of SDF-1/CXCR4 axis in EMT process of glioblastoma. In the present study, CXCR4 activation and inhibition in U87 were induced with exogenous SDF-1 and with CXCR4 small interfering RNA (siRNA), respectively. CXCR4 downstream signal molecules AKT, ERK, and EMT biomarkers (vementin, snail, N-cadherin, and E-cadherin) were tested using the Western blot. Our results showed that SDF-1 can induce AKT and ERK phosphorylation in a dose-dependent manner, and endogenous CXCR4 can be blocked thoroughly by CXCR4 siRNA in U87. Notably SDF-1 alone treatment can induce the upregulation of vementin, snail, and N-cadherin of U87; besides, the downregulation of E-cadherin also occurred. On the contrary, CXCR4 siRNA significantly prohibited SDF-1-induced AKT and ERK phosphorylation, at the same time, EMT biomarker changes were not observed. Function analysis revealed that CXCR4 siRNA obviously interfered with U87 cell migration and proliferation, according to wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the SDF-1/CXCR4 axis in glioblastoma, and then involved in the tumor cell invasion and proliferation via activation of PI3K/AKT and ERK pathway. Our study lays a new foundation for the treatment of glioblastoma through antagonizing CXCR4.
doi_str_mv 10.1007/s12035-014-8935-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722172119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722172119</sourcerecordid><originalsourceid>FETCH-LOGICAL-p314t-c47141b3a6e68daff03d7724c018b17dffd7dd3c26aaee345bc9b53e303e60743</originalsourceid><addsrcrecordid>eNo1UE9LwzAcDaK4Of0AXiRHL3X5JWnTHkeZc2zimBO8lbRJt0ia1qZF-u0tOE_v8f4dHkL3QJ6AEDH3QAkLAwI8iJORDBdoCmGYBAAxvURTMqqBiHg8QTfefxFCKRBxjSY0ZDQazSkq0890z_G7OTppjTvitVN9oRVeNqY7aWukDV611644DZW0-NBK501naofzAe_WbDNfbA5YurGx3-Cd7E4_cvDYOLyyps6t9F1dyVt0VUrr9d0ZZ-jjeXlIX4Lt22qdLrZBw4B3QcEFcMiZjHQUK1mWhCkhKC8IxDkIVZZKKMUKGkmpNeNhXiR5yDQjTEdEcDZDj3-7TVt_99p3WWV8oa2VTte9z0CMFwgKkIzRh3O0zyutsqY1lWyH7P8b9gvvzWXq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722172119</pqid></control><display><type>article</type><title>CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lv, Baoyu ; Yang, Xiangshan ; Lv, Shunzeng ; Wang, Lei ; Fan, Kaixi ; Shi, Ranran ; Wang, Fengling ; Song, Huishu ; Ma, Xiaochen ; Tan, Xuefen ; Xu, Kun ; Xie, Jingjing ; Wang, Guangmei ; Feng, Man ; Zhang, Li</creator><creatorcontrib>Lv, Baoyu ; Yang, Xiangshan ; Lv, Shunzeng ; Wang, Lei ; Fan, Kaixi ; Shi, Ranran ; Wang, Fengling ; Song, Huishu ; Ma, Xiaochen ; Tan, Xuefen ; Xu, Kun ; Xie, Jingjing ; Wang, Guangmei ; Feng, Man ; Zhang, Li</creatorcontrib><description>Stromal cell-derived factor 1 (SDF-1) and its receptor, CXCR4, play an important role in tumor progression. Epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. This study aimed to investigate the roles and underlying mechanisms of SDF-1/CXCR4 axis in EMT process of glioblastoma. In the present study, CXCR4 activation and inhibition in U87 were induced with exogenous SDF-1 and with CXCR4 small interfering RNA (siRNA), respectively. CXCR4 downstream signal molecules AKT, ERK, and EMT biomarkers (vementin, snail, N-cadherin, and E-cadherin) were tested using the Western blot. Our results showed that SDF-1 can induce AKT and ERK phosphorylation in a dose-dependent manner, and endogenous CXCR4 can be blocked thoroughly by CXCR4 siRNA in U87. Notably SDF-1 alone treatment can induce the upregulation of vementin, snail, and N-cadherin of U87; besides, the downregulation of E-cadherin also occurred. On the contrary, CXCR4 siRNA significantly prohibited SDF-1-induced AKT and ERK phosphorylation, at the same time, EMT biomarker changes were not observed. Function analysis revealed that CXCR4 siRNA obviously interfered with U87 cell migration and proliferation, according to wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the SDF-1/CXCR4 axis in glioblastoma, and then involved in the tumor cell invasion and proliferation via activation of PI3K/AKT and ERK pathway. Our study lays a new foundation for the treatment of glioblastoma through antagonizing CXCR4.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-014-8935-y</identifier><identifier>PMID: 25326893</identifier><language>eng</language><publisher>United States</publisher><subject>Antigens, CD - biosynthesis ; Antigens, CD - genetics ; Cadherins - biosynthesis ; Cadherins - genetics ; Cell Division - drug effects ; Cell Line, Tumor ; Cell Movement - drug effects ; Chemokine CXCL12 - pharmacology ; Chemokine CXCL12 - physiology ; Dose-Response Relationship, Drug ; Epithelial-Mesenchymal Transition - drug effects ; Epithelial-Mesenchymal Transition - physiology ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Humans ; MAP Kinase Signaling System - drug effects ; MAP Kinase Signaling System - physiology ; Neoplasm Proteins - genetics ; Neoplasm Proteins - pharmacology ; Neoplasm Proteins - physiology ; Phosphorylation - drug effects ; Protein Processing, Post-Translational - drug effects ; Proto-Oncogene Proteins c-akt - physiology ; Receptors, CXCR4 - genetics ; Receptors, CXCR4 - physiology ; RNA Interference ; RNA, Small Interfering - genetics ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Snail Family Transcription Factors ; Transcription Factors - biosynthesis ; Transcription Factors - genetics ; Vimentin - biosynthesis ; Vimentin - genetics</subject><ispartof>Molecular neurobiology, 2015-12, Vol.52 (3), p.1263-1268</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25326893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lv, Baoyu</creatorcontrib><creatorcontrib>Yang, Xiangshan</creatorcontrib><creatorcontrib>Lv, Shunzeng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Fan, Kaixi</creatorcontrib><creatorcontrib>Shi, Ranran</creatorcontrib><creatorcontrib>Wang, Fengling</creatorcontrib><creatorcontrib>Song, Huishu</creatorcontrib><creatorcontrib>Ma, Xiaochen</creatorcontrib><creatorcontrib>Tan, Xuefen</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Wang, Guangmei</creatorcontrib><creatorcontrib>Feng, Man</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><description>Stromal cell-derived factor 1 (SDF-1) and its receptor, CXCR4, play an important role in tumor progression. Epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. This study aimed to investigate the roles and underlying mechanisms of SDF-1/CXCR4 axis in EMT process of glioblastoma. In the present study, CXCR4 activation and inhibition in U87 were induced with exogenous SDF-1 and with CXCR4 small interfering RNA (siRNA), respectively. CXCR4 downstream signal molecules AKT, ERK, and EMT biomarkers (vementin, snail, N-cadherin, and E-cadherin) were tested using the Western blot. Our results showed that SDF-1 can induce AKT and ERK phosphorylation in a dose-dependent manner, and endogenous CXCR4 can be blocked thoroughly by CXCR4 siRNA in U87. Notably SDF-1 alone treatment can induce the upregulation of vementin, snail, and N-cadherin of U87; besides, the downregulation of E-cadherin also occurred. On the contrary, CXCR4 siRNA significantly prohibited SDF-1-induced AKT and ERK phosphorylation, at the same time, EMT biomarker changes were not observed. Function analysis revealed that CXCR4 siRNA obviously interfered with U87 cell migration and proliferation, according to wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the SDF-1/CXCR4 axis in glioblastoma, and then involved in the tumor cell invasion and proliferation via activation of PI3K/AKT and ERK pathway. Our study lays a new foundation for the treatment of glioblastoma through antagonizing CXCR4.</description><subject>Antigens, CD - biosynthesis</subject><subject>Antigens, CD - genetics</subject><subject>Cadherins - biosynthesis</subject><subject>Cadherins - genetics</subject><subject>Cell Division - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Chemokine CXCL12 - pharmacology</subject><subject>Chemokine CXCL12 - physiology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Epithelial-Mesenchymal Transition - drug effects</subject><subject>Epithelial-Mesenchymal Transition - physiology</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Humans</subject><subject>MAP Kinase Signaling System - drug effects</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - pharmacology</subject><subject>Neoplasm Proteins - physiology</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Processing, Post-Translational - drug effects</subject><subject>Proto-Oncogene Proteins c-akt - physiology</subject><subject>Receptors, CXCR4 - genetics</subject><subject>Receptors, CXCR4 - physiology</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Snail Family Transcription Factors</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcription Factors - genetics</subject><subject>Vimentin - biosynthesis</subject><subject>Vimentin - genetics</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1UE9LwzAcDaK4Of0AXiRHL3X5JWnTHkeZc2zimBO8lbRJt0ia1qZF-u0tOE_v8f4dHkL3QJ6AEDH3QAkLAwI8iJORDBdoCmGYBAAxvURTMqqBiHg8QTfefxFCKRBxjSY0ZDQazSkq0890z_G7OTppjTvitVN9oRVeNqY7aWukDV611644DZW0-NBK501naofzAe_WbDNfbA5YurGx3-Cd7E4_cvDYOLyyps6t9F1dyVt0VUrr9d0ZZ-jjeXlIX4Lt22qdLrZBw4B3QcEFcMiZjHQUK1mWhCkhKC8IxDkIVZZKKMUKGkmpNeNhXiR5yDQjTEdEcDZDj3-7TVt_99p3WWV8oa2VTte9z0CMFwgKkIzRh3O0zyutsqY1lWyH7P8b9gvvzWXq</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Lv, Baoyu</creator><creator>Yang, Xiangshan</creator><creator>Lv, Shunzeng</creator><creator>Wang, Lei</creator><creator>Fan, Kaixi</creator><creator>Shi, Ranran</creator><creator>Wang, Fengling</creator><creator>Song, Huishu</creator><creator>Ma, Xiaochen</creator><creator>Tan, Xuefen</creator><creator>Xu, Kun</creator><creator>Xie, Jingjing</creator><creator>Wang, Guangmei</creator><creator>Feng, Man</creator><creator>Zhang, Li</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope></search><sort><creationdate>20151201</creationdate><title>CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma</title><author>Lv, Baoyu ; Yang, Xiangshan ; Lv, Shunzeng ; Wang, Lei ; Fan, Kaixi ; Shi, Ranran ; Wang, Fengling ; Song, Huishu ; Ma, Xiaochen ; Tan, Xuefen ; Xu, Kun ; Xie, Jingjing ; Wang, Guangmei ; Feng, Man ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p314t-c47141b3a6e68daff03d7724c018b17dffd7dd3c26aaee345bc9b53e303e60743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antigens, CD - biosynthesis</topic><topic>Antigens, CD - genetics</topic><topic>Cadherins - biosynthesis</topic><topic>Cadherins - genetics</topic><topic>Cell Division - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Chemokine CXCL12 - pharmacology</topic><topic>Chemokine CXCL12 - physiology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Epithelial-Mesenchymal Transition - drug effects</topic><topic>Epithelial-Mesenchymal Transition - physiology</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Humans</topic><topic>MAP Kinase Signaling System - drug effects</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - pharmacology</topic><topic>Neoplasm Proteins - physiology</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Processing, Post-Translational - drug effects</topic><topic>Proto-Oncogene Proteins c-akt - physiology</topic><topic>Receptors, CXCR4 - genetics</topic><topic>Receptors, CXCR4 - physiology</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Snail Family Transcription Factors</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcription Factors - genetics</topic><topic>Vimentin - biosynthesis</topic><topic>Vimentin - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Baoyu</creatorcontrib><creatorcontrib>Yang, Xiangshan</creatorcontrib><creatorcontrib>Lv, Shunzeng</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Fan, Kaixi</creatorcontrib><creatorcontrib>Shi, Ranran</creatorcontrib><creatorcontrib>Wang, Fengling</creatorcontrib><creatorcontrib>Song, Huishu</creatorcontrib><creatorcontrib>Ma, Xiaochen</creatorcontrib><creatorcontrib>Tan, Xuefen</creatorcontrib><creatorcontrib>Xu, Kun</creatorcontrib><creatorcontrib>Xie, Jingjing</creatorcontrib><creatorcontrib>Wang, Guangmei</creatorcontrib><creatorcontrib>Feng, Man</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Baoyu</au><au>Yang, Xiangshan</au><au>Lv, Shunzeng</au><au>Wang, Lei</au><au>Fan, Kaixi</au><au>Shi, Ranran</au><au>Wang, Fengling</au><au>Song, Huishu</au><au>Ma, Xiaochen</au><au>Tan, Xuefen</au><au>Xu, Kun</au><au>Xie, Jingjing</au><au>Wang, Guangmei</au><au>Feng, Man</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma</atitle><jtitle>Molecular neurobiology</jtitle><addtitle>Mol Neurobiol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>52</volume><issue>3</issue><spage>1263</spage><epage>1268</epage><pages>1263-1268</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Stromal cell-derived factor 1 (SDF-1) and its receptor, CXCR4, play an important role in tumor progression. Epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. This study aimed to investigate the roles and underlying mechanisms of SDF-1/CXCR4 axis in EMT process of glioblastoma. In the present study, CXCR4 activation and inhibition in U87 were induced with exogenous SDF-1 and with CXCR4 small interfering RNA (siRNA), respectively. CXCR4 downstream signal molecules AKT, ERK, and EMT biomarkers (vementin, snail, N-cadherin, and E-cadherin) were tested using the Western blot. Our results showed that SDF-1 can induce AKT and ERK phosphorylation in a dose-dependent manner, and endogenous CXCR4 can be blocked thoroughly by CXCR4 siRNA in U87. Notably SDF-1 alone treatment can induce the upregulation of vementin, snail, and N-cadherin of U87; besides, the downregulation of E-cadherin also occurred. On the contrary, CXCR4 siRNA significantly prohibited SDF-1-induced AKT and ERK phosphorylation, at the same time, EMT biomarker changes were not observed. Function analysis revealed that CXCR4 siRNA obviously interfered with U87 cell migration and proliferation, according to wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the SDF-1/CXCR4 axis in glioblastoma, and then involved in the tumor cell invasion and proliferation via activation of PI3K/AKT and ERK pathway. Our study lays a new foundation for the treatment of glioblastoma through antagonizing CXCR4.</abstract><cop>United States</cop><pmid>25326893</pmid><doi>10.1007/s12035-014-8935-y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2015-12, Vol.52 (3), p.1263-1268
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1722172119
source MEDLINE; SpringerNature Journals
subjects Antigens, CD - biosynthesis
Antigens, CD - genetics
Cadherins - biosynthesis
Cadherins - genetics
Cell Division - drug effects
Cell Line, Tumor
Cell Movement - drug effects
Chemokine CXCL12 - pharmacology
Chemokine CXCL12 - physiology
Dose-Response Relationship, Drug
Epithelial-Mesenchymal Transition - drug effects
Epithelial-Mesenchymal Transition - physiology
Glioblastoma - metabolism
Glioblastoma - pathology
Humans
MAP Kinase Signaling System - drug effects
MAP Kinase Signaling System - physiology
Neoplasm Proteins - genetics
Neoplasm Proteins - pharmacology
Neoplasm Proteins - physiology
Phosphorylation - drug effects
Protein Processing, Post-Translational - drug effects
Proto-Oncogene Proteins c-akt - physiology
Receptors, CXCR4 - genetics
Receptors, CXCR4 - physiology
RNA Interference
RNA, Small Interfering - genetics
Signal Transduction - drug effects
Signal Transduction - physiology
Snail Family Transcription Factors
Transcription Factors - biosynthesis
Transcription Factors - genetics
Vimentin - biosynthesis
Vimentin - genetics
title CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CXCR4%20Signaling%20Induced%20Epithelial-Mesenchymal%20Transition%20by%20PI3K/AKT%20and%20ERK%20Pathways%20in%20Glioblastoma&rft.jtitle=Molecular%20neurobiology&rft.au=Lv,%20Baoyu&rft.date=2015-12-01&rft.volume=52&rft.issue=3&rft.spage=1263&rft.epage=1268&rft.pages=1263-1268&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-014-8935-y&rft_dat=%3Cproquest_pubme%3E1722172119%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1722172119&rft_id=info:pmid/25326893&rfr_iscdi=true