Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice

Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transgenic research 2015-10, Vol.24 (5), p.803-812
Hauptverfasser: Spinelli, Valeria, Martin, Céline, Dorchies, Emilie, Vallez, Emmanuelle, Dehondt, Hélène, Trabelsi, Mohamed-Sami, Tailleux, Anne, Caron, Sandrine, Staels, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 5
container_start_page 803
container_title Transgenic research
container_volume 24
creator Spinelli, Valeria
Martin, Céline
Dorchies, Emilie
Vallez, Emmanuelle
Dehondt, Hélène
Trabelsi, Mohamed-Sami
Tailleux, Anne
Caron, Sandrine
Staels, Bart
description Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100 %, rendering it useless (aP2-Cre strain), to ~5 %, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.
doi_str_mv 10.1007/s11248-015-9889-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722171145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1712779096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-444b4823daf6c3d50256c9ef212a147ef09068360f1b929e0656f929d12a2b8b3</originalsourceid><addsrcrecordid>eNqNkV1LHDEUhkOp1NX2B_RGAr3pTTQnM5OP3pXFqiAo2l6HTPbMGtmZ2SZZZP-9GdeKCAWv8nGe9805eQn5CvwYOFcnCUDUmnFomNHaMPhAZtCoiplK6o9kxo0UTGsw--QgpXvOi0pXn8i-kNyAMmJG7K2PiEMYljTl6DIutzSPdIkDTifqcbWiaY0-dMHTiH7s2zC4HMbhB3XUu4Tldj3GTB9CvqP5DunNxTWbR6R98PiZ7HVulfDL83pI_vw6_T0_Z5dXZxfzn5fM16rJrK7rttaiWrhO-mrRcNFIb7ATIBzUCjtuuNSV5B20RhjkspFd2SxKXbS6rQ7J953vOo5_N5iy7UOamncDjptkQQkBCqBu3oGCUMqUzyvotzfo_biJQxnkiRJKgpoMYUf5OKYUsbPrGHoXtxa4nYKyu6BsCcpOQVkomqNn503b4-JF8S-ZAogdkEppWGJ89fR_XR8BqyubqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712276175</pqid></control><display><type>article</type><title>Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Spinelli, Valeria ; Martin, Céline ; Dorchies, Emilie ; Vallez, Emmanuelle ; Dehondt, Hélène ; Trabelsi, Mohamed-Sami ; Tailleux, Anne ; Caron, Sandrine ; Staels, Bart</creator><creatorcontrib>Spinelli, Valeria ; Martin, Céline ; Dorchies, Emilie ; Vallez, Emmanuelle ; Dehondt, Hélène ; Trabelsi, Mohamed-Sami ; Tailleux, Anne ; Caron, Sandrine ; Staels, Bart</creatorcontrib><description>Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100 %, rendering it useless (aP2-Cre strain), to ~5 %, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-015-9889-1</identifier><identifier>PMID: 26091792</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Alleles ; Animal Genetics and Genomics ; Animals ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Genetic Engineering ; Germ Cells ; Integrases - genetics ; Islets of Langerhans - metabolism ; Life Sciences ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Medicine ; Original Paper ; Plant Genetics and Genomics ; Polymerase Chain Reaction ; Recombination, Genetic ; Transgenics</subject><ispartof>Transgenic research, 2015-10, Vol.24 (5), p.803-812</ispartof><rights>Springer International Publishing Switzerland 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-444b4823daf6c3d50256c9ef212a147ef09068360f1b929e0656f929d12a2b8b3</citedby><cites>FETCH-LOGICAL-c475t-444b4823daf6c3d50256c9ef212a147ef09068360f1b929e0656f929d12a2b8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11248-015-9889-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11248-015-9889-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26091792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spinelli, Valeria</creatorcontrib><creatorcontrib>Martin, Céline</creatorcontrib><creatorcontrib>Dorchies, Emilie</creatorcontrib><creatorcontrib>Vallez, Emmanuelle</creatorcontrib><creatorcontrib>Dehondt, Hélène</creatorcontrib><creatorcontrib>Trabelsi, Mohamed-Sami</creatorcontrib><creatorcontrib>Tailleux, Anne</creatorcontrib><creatorcontrib>Caron, Sandrine</creatorcontrib><creatorcontrib>Staels, Bart</creatorcontrib><title>Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100 %, rendering it useless (aP2-Cre strain), to ~5 %, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.</description><subject>Alleles</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Genetic Engineering</subject><subject>Germ Cells</subject><subject>Integrases - genetics</subject><subject>Islets of Langerhans - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Plant Genetics and Genomics</subject><subject>Polymerase Chain Reaction</subject><subject>Recombination, Genetic</subject><subject>Transgenics</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkV1LHDEUhkOp1NX2B_RGAr3pTTQnM5OP3pXFqiAo2l6HTPbMGtmZ2SZZZP-9GdeKCAWv8nGe9805eQn5CvwYOFcnCUDUmnFomNHaMPhAZtCoiplK6o9kxo0UTGsw--QgpXvOi0pXn8i-kNyAMmJG7K2PiEMYljTl6DIutzSPdIkDTifqcbWiaY0-dMHTiH7s2zC4HMbhB3XUu4Tldj3GTB9CvqP5DunNxTWbR6R98PiZ7HVulfDL83pI_vw6_T0_Z5dXZxfzn5fM16rJrK7rttaiWrhO-mrRcNFIb7ATIBzUCjtuuNSV5B20RhjkspFd2SxKXbS6rQ7J953vOo5_N5iy7UOamncDjptkQQkBCqBu3oGCUMqUzyvotzfo_biJQxnkiRJKgpoMYUf5OKYUsbPrGHoXtxa4nYKyu6BsCcpOQVkomqNn503b4-JF8S-ZAogdkEppWGJ89fR_XR8BqyubqA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Spinelli, Valeria</creator><creator>Martin, Céline</creator><creator>Dorchies, Emilie</creator><creator>Vallez, Emmanuelle</creator><creator>Dehondt, Hélène</creator><creator>Trabelsi, Mohamed-Sami</creator><creator>Tailleux, Anne</creator><creator>Caron, Sandrine</creator><creator>Staels, Bart</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20151001</creationdate><title>Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice</title><author>Spinelli, Valeria ; Martin, Céline ; Dorchies, Emilie ; Vallez, Emmanuelle ; Dehondt, Hélène ; Trabelsi, Mohamed-Sami ; Tailleux, Anne ; Caron, Sandrine ; Staels, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-444b4823daf6c3d50256c9ef212a147ef09068360f1b929e0656f929d12a2b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Genetic Engineering</topic><topic>Germ Cells</topic><topic>Integrases - genetics</topic><topic>Islets of Langerhans - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Plant Genetics and Genomics</topic><topic>Polymerase Chain Reaction</topic><topic>Recombination, Genetic</topic><topic>Transgenics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spinelli, Valeria</creatorcontrib><creatorcontrib>Martin, Céline</creatorcontrib><creatorcontrib>Dorchies, Emilie</creatorcontrib><creatorcontrib>Vallez, Emmanuelle</creatorcontrib><creatorcontrib>Dehondt, Hélène</creatorcontrib><creatorcontrib>Trabelsi, Mohamed-Sami</creatorcontrib><creatorcontrib>Tailleux, Anne</creatorcontrib><creatorcontrib>Caron, Sandrine</creatorcontrib><creatorcontrib>Staels, Bart</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spinelli, Valeria</au><au>Martin, Céline</au><au>Dorchies, Emilie</au><au>Vallez, Emmanuelle</au><au>Dehondt, Hélène</au><au>Trabelsi, Mohamed-Sami</au><au>Tailleux, Anne</au><au>Caron, Sandrine</au><au>Staels, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>24</volume><issue>5</issue><spage>803</spage><epage>812</epage><pages>803-812</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100 %, rendering it useless (aP2-Cre strain), to ~5 %, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>26091792</pmid><doi>10.1007/s11248-015-9889-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2015-10, Vol.24 (5), p.803-812
issn 0962-8819
1573-9368
language eng
recordid cdi_proquest_miscellaneous_1722171145
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alleles
Animal Genetics and Genomics
Animals
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Genetic Engineering
Germ Cells
Integrases - genetics
Islets of Langerhans - metabolism
Life Sciences
Mice
Mice, Inbred C57BL
Mice, Knockout
Molecular Medicine
Original Paper
Plant Genetics and Genomics
Polymerase Chain Reaction
Recombination, Genetic
Transgenics
title Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20strategy%20to%20generate%20cell%20specific%20recombination:%20a%20case%20report%20with%20the%20RIP-Cre%20mice&rft.jtitle=Transgenic%20research&rft.au=Spinelli,%20Valeria&rft.date=2015-10-01&rft.volume=24&rft.issue=5&rft.spage=803&rft.epage=812&rft.pages=803-812&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-015-9889-1&rft_dat=%3Cproquest_cross%3E1712779096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712276175&rft_id=info:pmid/26091792&rfr_iscdi=true