Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice

Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlyin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology 2015-09, Vol.45 (9), p.2568-2581
Hauptverfasser: Hartmann, Wiebke, Schramm, Christoph, Breloer, Minka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2581
container_issue 9
container_start_page 2568
container_title European journal of immunology
container_volume 45
creator Hartmann, Wiebke
Schramm, Christoph
Breloer, Minka
description Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.
doi_str_mv 10.1002/eji.201545503
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722170769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1710654608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERYfCki3ykkXTXv_Ejpeo6s-gkdgM6ygT3ymukjj4JlSz4xHoq_AgPESfBI-mdInY2Jbvd47v9WHsnYAzASDP8S6cSRClLktQL9hClFIUWmjxki0AhC6kq-CYvSa6AwBnSveKHUsjVGWMXbCHVZhiHykGj8Qp3PbRx2EKxMPg5zbfra-vHn_8_P2LJ2xxnGLKBxrjQOE7nvLlKhcF5GVMMQvCcMvXvMWuIz59bSZO8zhmAfHNjqZm8Jj4OtN7gmdJF7aYminEIT_I-9DiG3a0bTrCt0_7Cftydbm-uClWn6-XFx9XRauhgkIaK7SxoPJEjXWoWmOl9xUCbDTayucvUa2yxmpXKuON043AUmthnNPg1Qn7cPDNXXybkaa6D7RvqxkwzlQLK6WwYI37D1SAKbWBKqPFAW1TJEq4rccU-ibtagH1PrA6B1Y_B5b590_W86ZH_0z_TSgD8gDchw53_3arLz8tlXKg_gC-h6Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710654608</pqid></control><display><type>article</type><title>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Hartmann, Wiebke ; Schramm, Christoph ; Breloer, Minka</creator><creatorcontrib>Hartmann, Wiebke ; Schramm, Christoph ; Breloer, Minka</creatorcontrib><description>Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.201545503</identifier><identifier>PMID: 26138667</identifier><language>eng</language><publisher>Germany</publisher><subject>Adoptive Transfer ; Animals ; Bystander Effect - immunology ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - parasitology ; Cell Proliferation ; Disease Models, Animal ; Female ; Filaria ; Filariasis - genetics ; Filariasis - immunology ; Filariasis - parasitology ; Filariasis - pathology ; Filarioidea - immunology ; Gene Expression Regulation ; Helminth ; Host-Pathogen Interactions ; IL‐10 ; Immune modulation ; Interleukin-10 - genetics ; Interleukin-10 - immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mouse ; Nematode ; Ovalbumin - administration &amp; dosage ; Ovalbumin - immunology ; Programmed Cell Death 1 Receptor - genetics ; Programmed Cell Death 1 Receptor - immunology ; Receptors, Transforming Growth Factor beta - genetics ; Receptors, Transforming Growth Factor beta - immunology ; Signal Transduction ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - parasitology ; TGF‐β ; Th2 Cells - immunology ; Th2 Cells - parasitology ; Treg cell</subject><ispartof>European journal of immunology, 2015-09, Vol.45 (9), p.2568-2581</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</citedby><cites>FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.201545503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.201545503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26138667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartmann, Wiebke</creatorcontrib><creatorcontrib>Schramm, Christoph</creatorcontrib><creatorcontrib>Breloer, Minka</creatorcontrib><title>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.</description><subject>Adoptive Transfer</subject><subject>Animals</subject><subject>Bystander Effect - immunology</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - parasitology</subject><subject>Cell Proliferation</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Filaria</subject><subject>Filariasis - genetics</subject><subject>Filariasis - immunology</subject><subject>Filariasis - parasitology</subject><subject>Filariasis - pathology</subject><subject>Filarioidea - immunology</subject><subject>Gene Expression Regulation</subject><subject>Helminth</subject><subject>Host-Pathogen Interactions</subject><subject>IL‐10</subject><subject>Immune modulation</subject><subject>Interleukin-10 - genetics</subject><subject>Interleukin-10 - immunology</subject><subject>Lymphocyte Activation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Mouse</subject><subject>Nematode</subject><subject>Ovalbumin - administration &amp; dosage</subject><subject>Ovalbumin - immunology</subject><subject>Programmed Cell Death 1 Receptor - genetics</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Receptors, Transforming Growth Factor beta - genetics</subject><subject>Receptors, Transforming Growth Factor beta - immunology</subject><subject>Signal Transduction</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - parasitology</subject><subject>TGF‐β</subject><subject>Th2 Cells - immunology</subject><subject>Th2 Cells - parasitology</subject><subject>Treg cell</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS1ERYfCki3ykkXTXv_Ejpeo6s-gkdgM6ygT3ymukjj4JlSz4xHoq_AgPESfBI-mdInY2Jbvd47v9WHsnYAzASDP8S6cSRClLktQL9hClFIUWmjxki0AhC6kq-CYvSa6AwBnSveKHUsjVGWMXbCHVZhiHykGj8Qp3PbRx2EKxMPg5zbfra-vHn_8_P2LJ2xxnGLKBxrjQOE7nvLlKhcF5GVMMQvCcMvXvMWuIz59bSZO8zhmAfHNjqZm8Jj4OtN7gmdJF7aYminEIT_I-9DiG3a0bTrCt0_7Cftydbm-uClWn6-XFx9XRauhgkIaK7SxoPJEjXWoWmOl9xUCbDTayucvUa2yxmpXKuON043AUmthnNPg1Qn7cPDNXXybkaa6D7RvqxkwzlQLK6WwYI37D1SAKbWBKqPFAW1TJEq4rccU-ibtagH1PrA6B1Y_B5b590_W86ZH_0z_TSgD8gDchw53_3arLz8tlXKg_gC-h6Sw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Hartmann, Wiebke</creator><creator>Schramm, Christoph</creator><creator>Breloer, Minka</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>201509</creationdate><title>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</title><author>Hartmann, Wiebke ; Schramm, Christoph ; Breloer, Minka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adoptive Transfer</topic><topic>Animals</topic><topic>Bystander Effect - immunology</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - parasitology</topic><topic>Cell Proliferation</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Filaria</topic><topic>Filariasis - genetics</topic><topic>Filariasis - immunology</topic><topic>Filariasis - parasitology</topic><topic>Filariasis - pathology</topic><topic>Filarioidea - immunology</topic><topic>Gene Expression Regulation</topic><topic>Helminth</topic><topic>Host-Pathogen Interactions</topic><topic>IL‐10</topic><topic>Immune modulation</topic><topic>Interleukin-10 - genetics</topic><topic>Interleukin-10 - immunology</topic><topic>Lymphocyte Activation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Mouse</topic><topic>Nematode</topic><topic>Ovalbumin - administration &amp; dosage</topic><topic>Ovalbumin - immunology</topic><topic>Programmed Cell Death 1 Receptor - genetics</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Receptors, Transforming Growth Factor beta - genetics</topic><topic>Receptors, Transforming Growth Factor beta - immunology</topic><topic>Signal Transduction</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - parasitology</topic><topic>TGF‐β</topic><topic>Th2 Cells - immunology</topic><topic>Th2 Cells - parasitology</topic><topic>Treg cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartmann, Wiebke</creatorcontrib><creatorcontrib>Schramm, Christoph</creatorcontrib><creatorcontrib>Breloer, Minka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartmann, Wiebke</au><au>Schramm, Christoph</au><au>Breloer, Minka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2015-09</date><risdate>2015</risdate><volume>45</volume><issue>9</issue><spage>2568</spage><epage>2581</epage><pages>2568-2581</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><abstract>Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.</abstract><cop>Germany</cop><pmid>26138667</pmid><doi>10.1002/eji.201545503</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2980
ispartof European journal of immunology, 2015-09, Vol.45 (9), p.2568-2581
issn 0014-2980
1521-4141
language eng
recordid cdi_proquest_miscellaneous_1722170769
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals
subjects Adoptive Transfer
Animals
Bystander Effect - immunology
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - parasitology
Cell Proliferation
Disease Models, Animal
Female
Filaria
Filariasis - genetics
Filariasis - immunology
Filariasis - parasitology
Filariasis - pathology
Filarioidea - immunology
Gene Expression Regulation
Helminth
Host-Pathogen Interactions
IL‐10
Immune modulation
Interleukin-10 - genetics
Interleukin-10 - immunology
Lymphocyte Activation
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mouse
Nematode
Ovalbumin - administration & dosage
Ovalbumin - immunology
Programmed Cell Death 1 Receptor - genetics
Programmed Cell Death 1 Receptor - immunology
Receptors, Transforming Growth Factor beta - genetics
Receptors, Transforming Growth Factor beta - immunology
Signal Transduction
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - parasitology
TGF‐β
Th2 Cells - immunology
Th2 Cells - parasitology
Treg cell
title Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Litomosoides%20sigmodontis%20induces%20TGF%E2%80%90%CE%B2%20receptor%20responsive,%20IL%E2%80%9010%E2%80%90producing%20T%20cells%20that%20suppress%20bystander%20T%E2%80%90cell%20proliferation%20in%20mice&rft.jtitle=European%20journal%20of%20immunology&rft.au=Hartmann,%20Wiebke&rft.date=2015-09&rft.volume=45&rft.issue=9&rft.spage=2568&rft.epage=2581&rft.pages=2568-2581&rft.issn=0014-2980&rft.eissn=1521-4141&rft_id=info:doi/10.1002/eji.201545503&rft_dat=%3Cproquest_cross%3E1710654608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710654608&rft_id=info:pmid/26138667&rfr_iscdi=true