Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice
Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlyin...
Gespeichert in:
Veröffentlicht in: | European journal of immunology 2015-09, Vol.45 (9), p.2568-2581 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2581 |
---|---|
container_issue | 9 |
container_start_page | 2568 |
container_title | European journal of immunology |
container_volume | 45 |
creator | Hartmann, Wiebke Schramm, Christoph Breloer, Minka |
description | Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice. |
doi_str_mv | 10.1002/eji.201545503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1722170769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1710654608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERYfCki3ykkXTXv_Ejpeo6s-gkdgM6ygT3ymukjj4JlSz4xHoq_AgPESfBI-mdInY2Jbvd47v9WHsnYAzASDP8S6cSRClLktQL9hClFIUWmjxki0AhC6kq-CYvSa6AwBnSveKHUsjVGWMXbCHVZhiHykGj8Qp3PbRx2EKxMPg5zbfra-vHn_8_P2LJ2xxnGLKBxrjQOE7nvLlKhcF5GVMMQvCcMvXvMWuIz59bSZO8zhmAfHNjqZm8Jj4OtN7gmdJF7aYminEIT_I-9DiG3a0bTrCt0_7Cftydbm-uClWn6-XFx9XRauhgkIaK7SxoPJEjXWoWmOl9xUCbDTayucvUa2yxmpXKuON043AUmthnNPg1Qn7cPDNXXybkaa6D7RvqxkwzlQLK6WwYI37D1SAKbWBKqPFAW1TJEq4rccU-ibtagH1PrA6B1Y_B5b590_W86ZH_0z_TSgD8gDchw53_3arLz8tlXKg_gC-h6Sw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710654608</pqid></control><display><type>article</type><title>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Hartmann, Wiebke ; Schramm, Christoph ; Breloer, Minka</creator><creatorcontrib>Hartmann, Wiebke ; Schramm, Christoph ; Breloer, Minka</creatorcontrib><description>Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.201545503</identifier><identifier>PMID: 26138667</identifier><language>eng</language><publisher>Germany</publisher><subject>Adoptive Transfer ; Animals ; Bystander Effect - immunology ; CD8-Positive T-Lymphocytes - immunology ; CD8-Positive T-Lymphocytes - parasitology ; Cell Proliferation ; Disease Models, Animal ; Female ; Filaria ; Filariasis - genetics ; Filariasis - immunology ; Filariasis - parasitology ; Filariasis - pathology ; Filarioidea - immunology ; Gene Expression Regulation ; Helminth ; Host-Pathogen Interactions ; IL‐10 ; Immune modulation ; Interleukin-10 - genetics ; Interleukin-10 - immunology ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mouse ; Nematode ; Ovalbumin - administration & dosage ; Ovalbumin - immunology ; Programmed Cell Death 1 Receptor - genetics ; Programmed Cell Death 1 Receptor - immunology ; Receptors, Transforming Growth Factor beta - genetics ; Receptors, Transforming Growth Factor beta - immunology ; Signal Transduction ; T-Lymphocytes, Regulatory - immunology ; T-Lymphocytes, Regulatory - parasitology ; TGF‐β ; Th2 Cells - immunology ; Th2 Cells - parasitology ; Treg cell</subject><ispartof>European journal of immunology, 2015-09, Vol.45 (9), p.2568-2581</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</citedby><cites>FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.201545503$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.201545503$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26138667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartmann, Wiebke</creatorcontrib><creatorcontrib>Schramm, Christoph</creatorcontrib><creatorcontrib>Breloer, Minka</creatorcontrib><title>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.</description><subject>Adoptive Transfer</subject><subject>Animals</subject><subject>Bystander Effect - immunology</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>CD8-Positive T-Lymphocytes - parasitology</subject><subject>Cell Proliferation</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Filaria</subject><subject>Filariasis - genetics</subject><subject>Filariasis - immunology</subject><subject>Filariasis - parasitology</subject><subject>Filariasis - pathology</subject><subject>Filarioidea - immunology</subject><subject>Gene Expression Regulation</subject><subject>Helminth</subject><subject>Host-Pathogen Interactions</subject><subject>IL‐10</subject><subject>Immune modulation</subject><subject>Interleukin-10 - genetics</subject><subject>Interleukin-10 - immunology</subject><subject>Lymphocyte Activation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Mouse</subject><subject>Nematode</subject><subject>Ovalbumin - administration & dosage</subject><subject>Ovalbumin - immunology</subject><subject>Programmed Cell Death 1 Receptor - genetics</subject><subject>Programmed Cell Death 1 Receptor - immunology</subject><subject>Receptors, Transforming Growth Factor beta - genetics</subject><subject>Receptors, Transforming Growth Factor beta - immunology</subject><subject>Signal Transduction</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>T-Lymphocytes, Regulatory - parasitology</subject><subject>TGF‐β</subject><subject>Th2 Cells - immunology</subject><subject>Th2 Cells - parasitology</subject><subject>Treg cell</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS1ERYfCki3ykkXTXv_Ejpeo6s-gkdgM6ygT3ymukjj4JlSz4xHoq_AgPESfBI-mdInY2Jbvd47v9WHsnYAzASDP8S6cSRClLktQL9hClFIUWmjxki0AhC6kq-CYvSa6AwBnSveKHUsjVGWMXbCHVZhiHykGj8Qp3PbRx2EKxMPg5zbfra-vHn_8_P2LJ2xxnGLKBxrjQOE7nvLlKhcF5GVMMQvCcMvXvMWuIz59bSZO8zhmAfHNjqZm8Jj4OtN7gmdJF7aYminEIT_I-9DiG3a0bTrCt0_7Cftydbm-uClWn6-XFx9XRauhgkIaK7SxoPJEjXWoWmOl9xUCbDTayucvUa2yxmpXKuON043AUmthnNPg1Qn7cPDNXXybkaa6D7RvqxkwzlQLK6WwYI37D1SAKbWBKqPFAW1TJEq4rccU-ibtagH1PrA6B1Y_B5b590_W86ZH_0z_TSgD8gDchw53_3arLz8tlXKg_gC-h6Sw</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Hartmann, Wiebke</creator><creator>Schramm, Christoph</creator><creator>Breloer, Minka</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>201509</creationdate><title>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</title><author>Hartmann, Wiebke ; Schramm, Christoph ; Breloer, Minka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4080-267146703659a79e3c672dd8e00b4e78d1543c376749536d694a1e544169940d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adoptive Transfer</topic><topic>Animals</topic><topic>Bystander Effect - immunology</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>CD8-Positive T-Lymphocytes - parasitology</topic><topic>Cell Proliferation</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Filaria</topic><topic>Filariasis - genetics</topic><topic>Filariasis - immunology</topic><topic>Filariasis - parasitology</topic><topic>Filariasis - pathology</topic><topic>Filarioidea - immunology</topic><topic>Gene Expression Regulation</topic><topic>Helminth</topic><topic>Host-Pathogen Interactions</topic><topic>IL‐10</topic><topic>Immune modulation</topic><topic>Interleukin-10 - genetics</topic><topic>Interleukin-10 - immunology</topic><topic>Lymphocyte Activation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Mouse</topic><topic>Nematode</topic><topic>Ovalbumin - administration & dosage</topic><topic>Ovalbumin - immunology</topic><topic>Programmed Cell Death 1 Receptor - genetics</topic><topic>Programmed Cell Death 1 Receptor - immunology</topic><topic>Receptors, Transforming Growth Factor beta - genetics</topic><topic>Receptors, Transforming Growth Factor beta - immunology</topic><topic>Signal Transduction</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>T-Lymphocytes, Regulatory - parasitology</topic><topic>TGF‐β</topic><topic>Th2 Cells - immunology</topic><topic>Th2 Cells - parasitology</topic><topic>Treg cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartmann, Wiebke</creatorcontrib><creatorcontrib>Schramm, Christoph</creatorcontrib><creatorcontrib>Breloer, Minka</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartmann, Wiebke</au><au>Schramm, Christoph</au><au>Breloer, Minka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2015-09</date><risdate>2015</risdate><volume>45</volume><issue>9</issue><spage>2568</spage><epage>2581</epage><pages>2568-2581</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><abstract>Helminth parasites suppress immune responses to prolong their survival within the mammalian host. Thereby not only helminth‐specific but also nonhelminth‐specific bystander immune responses are suppressed. Here, we use the murine model of Litomosoides sigmodontis infection to elucidate the underlying mechanisms leading to this bystander T‐cell suppression. When OT‐II T cells specific for the third‐party antigen ovalbumin are transferred into helminth‐infected mice, these cells respond to antigen‐specific stimulation with reduced proliferation compared to activation within non‐infected mice. Thus, the presence of parasitic worms in the thoracic cavity translates to suppression of T cells with a different specificity at a different site. By eliminating regulatory receptors, cytokines, and cell populations from this system, we provide evidence for a two‐staged process. Parasite products first engage the TGF‐β receptor on host‐derived T cells that are central to suppression. In a second step, host‐derived T cells produce IL‐10 and subsequently suppress the adoptively transferred OT‐II T cells. Terminal suppression was IL‐10‐dependant but independent of intrinsic TGF‐β receptor‐ or PD‐1‐mediated signaling in the suppressed OT‐II T cells. Blockade of the same key suppression mediators, i.e. TGF‐β‐ and IL‐10 receptor, also ameliorated the suppression of IgG response to bystander antigen vaccination in L. sigmodontis‐infected mice.</abstract><cop>Germany</cop><pmid>26138667</pmid><doi>10.1002/eji.201545503</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-2980 |
ispartof | European journal of immunology, 2015-09, Vol.45 (9), p.2568-2581 |
issn | 0014-2980 1521-4141 |
language | eng |
recordid | cdi_proquest_miscellaneous_1722170769 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals |
subjects | Adoptive Transfer Animals Bystander Effect - immunology CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - parasitology Cell Proliferation Disease Models, Animal Female Filaria Filariasis - genetics Filariasis - immunology Filariasis - parasitology Filariasis - pathology Filarioidea - immunology Gene Expression Regulation Helminth Host-Pathogen Interactions IL‐10 Immune modulation Interleukin-10 - genetics Interleukin-10 - immunology Lymphocyte Activation Mice Mice, Inbred C57BL Mice, Transgenic Mouse Nematode Ovalbumin - administration & dosage Ovalbumin - immunology Programmed Cell Death 1 Receptor - genetics Programmed Cell Death 1 Receptor - immunology Receptors, Transforming Growth Factor beta - genetics Receptors, Transforming Growth Factor beta - immunology Signal Transduction T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - parasitology TGF‐β Th2 Cells - immunology Th2 Cells - parasitology Treg cell |
title | Litomosoides sigmodontis induces TGF‐β receptor responsive, IL‐10‐producing T cells that suppress bystander T‐cell proliferation in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Litomosoides%20sigmodontis%20induces%20TGF%E2%80%90%CE%B2%20receptor%20responsive,%20IL%E2%80%9010%E2%80%90producing%20T%20cells%20that%20suppress%20bystander%20T%E2%80%90cell%20proliferation%20in%20mice&rft.jtitle=European%20journal%20of%20immunology&rft.au=Hartmann,%20Wiebke&rft.date=2015-09&rft.volume=45&rft.issue=9&rft.spage=2568&rft.epage=2581&rft.pages=2568-2581&rft.issn=0014-2980&rft.eissn=1521-4141&rft_id=info:doi/10.1002/eji.201545503&rft_dat=%3Cproquest_cross%3E1710654608%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710654608&rft_id=info:pmid/26138667&rfr_iscdi=true |