Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation

This study aimed at further increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. We examined two strategies to decrease the activity of F₀F₁-ATPase. The strategie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2006-05, Vol.100 (5), p.1043-1053
Hauptverfasser: Liu, L.M, Li, Y, Du, G.C, Chen, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1053
container_issue 5
container_start_page 1043
container_title Journal of applied microbiology
container_volume 100
creator Liu, L.M
Li, Y
Du, G.C
Chen, J
description This study aimed at further increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. We examined two strategies to decrease the activity of F₀F₁-ATPase. The strategies were to inhibit F₀F₁-ATPase activity by addition of oligomycin, or to disrupt F₀F₁-ATPase by screening neomycin-resistant mutant. The addition of 0·05 mmol l[superscript [-]1] oligomycin to the culture broth of T. glabrata CCTCC M202019 resulted in a significantly decreased intracellular ATP level (35·7%) and a significantly increased glucose consumption rate (49·7%). A neomycin-resistant mutant N07 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the F₀F₁-ATPase activity of the mutant N07 decreased about 65%. As a consequence, intracellular ATP level of the mutant N07 decreased by 24%, which resulted in a decreased growth rate and growth yield. As expected, glucose consumption rate and pyruvate productivity of the mutant N07 increased by 34% and 42·9%, respectively. Consistently, the activities of key glycolytic enzymes of the mutant N07, including phosphofructokinase, pyruvate kinase and glyceraldyde-3-phosphate dehydrogenase, increased by 63·7%, 28·8% and 14·4%, respectively. In addition, activities of the key enzymes involved in electron transfer chain of the mutant N07 also increased. Impaired oxidative phosphorylation in T. glabrata leads to a decreased intracellular ATP production, thereby increasing the glycolytic flux. The strategy of redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation provides an alternative approach to enhance the glycolytic flux in eukaryotic micro-organisms.
doi_str_mv 10.1111/j.1365-2672.2006.02871.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17213786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17213786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4791-66d4eec01d106babd134765af886c9e1a4ec349cb1af32d879144a6fbe26f2c23</originalsourceid><addsrcrecordid>eNqNktuO0zAQhiMEYg_wCmAhsXcpPiROcsFFteKwaBFIdK-tiTMurty42MnSPAZvjNNWrLRXWLI81nz_zMi_s4wwumBpvdssmJBlzmXFF5xSuaC8rthi_yQ7_5d4eoiLvKQVP8suYtxQygQt5fPsjEkpKKXlefbnptcBIdp-TdZu0t5Ng9XEuHFPbE9WPozO76KNKQttgAFIO5GAnQ2oh1m1XH0nu-C7MV19T0zwW-L3toPB3iPZ_fQx7TA5OKQHT-LYxiFVwtzhPbrHyIvsmQEX8eXpvMzuPn5YXX_Ob799urle3ua6qBqWS9kViJqyjlHZQtsxUVSyBFPXUjfIoEAtika3DIzgXZ00RQHStMil4ZqLy-zqWDcN_2vEOKitjRqdgx79GBWrOBNVLRP45hG48WPo02yKC96k9-YzVB8hHXyMAY3aBbuFMClG1eyZ2qjZGjVbo2bP1MEztU_SV6f6Y7vF7kF4MikBb08ARA3OBOi1jQ9cJauyPHDvj9xv63D67wHUl-XXOUr610e9Aa9gHVKPux-csjJ9HFo2tRB_AQjPv2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232936526</pqid></control><display><type>article</type><title>Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Liu, L.M ; Li, Y ; Du, G.C ; Chen, J</creator><creatorcontrib>Liu, L.M ; Li, Y ; Du, G.C ; Chen, J</creatorcontrib><description>This study aimed at further increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. We examined two strategies to decrease the activity of F₀F₁-ATPase. The strategies were to inhibit F₀F₁-ATPase activity by addition of oligomycin, or to disrupt F₀F₁-ATPase by screening neomycin-resistant mutant. The addition of 0·05 mmol l[superscript [-]1] oligomycin to the culture broth of T. glabrata CCTCC M202019 resulted in a significantly decreased intracellular ATP level (35·7%) and a significantly increased glucose consumption rate (49·7%). A neomycin-resistant mutant N07 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the F₀F₁-ATPase activity of the mutant N07 decreased about 65%. As a consequence, intracellular ATP level of the mutant N07 decreased by 24%, which resulted in a decreased growth rate and growth yield. As expected, glucose consumption rate and pyruvate productivity of the mutant N07 increased by 34% and 42·9%, respectively. Consistently, the activities of key glycolytic enzymes of the mutant N07, including phosphofructokinase, pyruvate kinase and glyceraldyde-3-phosphate dehydrogenase, increased by 63·7%, 28·8% and 14·4%, respectively. In addition, activities of the key enzymes involved in electron transfer chain of the mutant N07 also increased. Impaired oxidative phosphorylation in T. glabrata leads to a decreased intracellular ATP production, thereby increasing the glycolytic flux. The strategy of redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation provides an alternative approach to enhance the glycolytic flux in eukaryotic micro-organisms.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/j.1365-2672.2006.02871.x</identifier><identifier>PMID: 16630005</identifier><identifier>CODEN: JAMIFK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>adenosine triphosphate ; Adenosine Triphosphate - biosynthesis ; Antifungal Agents - pharmacology ; Biological and medical sciences ; Candida glabrata ; Candida glabrata - drug effects ; Candida glabrata - genetics ; Candida glabrata - growth &amp; development ; Candida glabrata - metabolism ; Culture Media ; Dose-Response Relationship, Drug ; Drug Resistance, Fungal ; F0F1‐ATPase ; Fundamental and applied biological sciences. Psychology ; glucose ; glycolysis ; Glycolysis - drug effects ; glycolytic flux ; H-transporting ATP synthase ; Microbiology ; Mutagenesis ; mutants ; neomycin‐resistant mutant ; oligomycin ; Oligomycins - pharmacology ; Oxidative Phosphorylation ; phosphofructokinases ; Phosphorylation ; pyruvate kinase ; pyruvic acid ; screening ; Torulopsis glabrata ; yeasts</subject><ispartof>Journal of applied microbiology, 2006-05, Vol.100 (5), p.1043-1053</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Blackwell Publishing May 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4791-66d4eec01d106babd134765af886c9e1a4ec349cb1af32d879144a6fbe26f2c23</citedby><cites>FETCH-LOGICAL-c4791-66d4eec01d106babd134765af886c9e1a4ec349cb1af32d879144a6fbe26f2c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2672.2006.02871.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2672.2006.02871.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17675505$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16630005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, L.M</creatorcontrib><creatorcontrib>Li, Y</creatorcontrib><creatorcontrib>Du, G.C</creatorcontrib><creatorcontrib>Chen, J</creatorcontrib><title>Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>This study aimed at further increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. We examined two strategies to decrease the activity of F₀F₁-ATPase. The strategies were to inhibit F₀F₁-ATPase activity by addition of oligomycin, or to disrupt F₀F₁-ATPase by screening neomycin-resistant mutant. The addition of 0·05 mmol l[superscript [-]1] oligomycin to the culture broth of T. glabrata CCTCC M202019 resulted in a significantly decreased intracellular ATP level (35·7%) and a significantly increased glucose consumption rate (49·7%). A neomycin-resistant mutant N07 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the F₀F₁-ATPase activity of the mutant N07 decreased about 65%. As a consequence, intracellular ATP level of the mutant N07 decreased by 24%, which resulted in a decreased growth rate and growth yield. As expected, glucose consumption rate and pyruvate productivity of the mutant N07 increased by 34% and 42·9%, respectively. Consistently, the activities of key glycolytic enzymes of the mutant N07, including phosphofructokinase, pyruvate kinase and glyceraldyde-3-phosphate dehydrogenase, increased by 63·7%, 28·8% and 14·4%, respectively. In addition, activities of the key enzymes involved in electron transfer chain of the mutant N07 also increased. Impaired oxidative phosphorylation in T. glabrata leads to a decreased intracellular ATP production, thereby increasing the glycolytic flux. The strategy of redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation provides an alternative approach to enhance the glycolytic flux in eukaryotic micro-organisms.</description><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Antifungal Agents - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Candida glabrata</subject><subject>Candida glabrata - drug effects</subject><subject>Candida glabrata - genetics</subject><subject>Candida glabrata - growth &amp; development</subject><subject>Candida glabrata - metabolism</subject><subject>Culture Media</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Resistance, Fungal</subject><subject>F0F1‐ATPase</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glucose</subject><subject>glycolysis</subject><subject>Glycolysis - drug effects</subject><subject>glycolytic flux</subject><subject>H-transporting ATP synthase</subject><subject>Microbiology</subject><subject>Mutagenesis</subject><subject>mutants</subject><subject>neomycin‐resistant mutant</subject><subject>oligomycin</subject><subject>Oligomycins - pharmacology</subject><subject>Oxidative Phosphorylation</subject><subject>phosphofructokinases</subject><subject>Phosphorylation</subject><subject>pyruvate kinase</subject><subject>pyruvic acid</subject><subject>screening</subject><subject>Torulopsis glabrata</subject><subject>yeasts</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNktuO0zAQhiMEYg_wCmAhsXcpPiROcsFFteKwaBFIdK-tiTMurty42MnSPAZvjNNWrLRXWLI81nz_zMi_s4wwumBpvdssmJBlzmXFF5xSuaC8rthi_yQ7_5d4eoiLvKQVP8suYtxQygQt5fPsjEkpKKXlefbnptcBIdp-TdZu0t5Ng9XEuHFPbE9WPozO76KNKQttgAFIO5GAnQ2oh1m1XH0nu-C7MV19T0zwW-L3toPB3iPZ_fQx7TA5OKQHT-LYxiFVwtzhPbrHyIvsmQEX8eXpvMzuPn5YXX_Ob799urle3ua6qBqWS9kViJqyjlHZQtsxUVSyBFPXUjfIoEAtika3DIzgXZ00RQHStMil4ZqLy-zqWDcN_2vEOKitjRqdgx79GBWrOBNVLRP45hG48WPo02yKC96k9-YzVB8hHXyMAY3aBbuFMClG1eyZ2qjZGjVbo2bP1MEztU_SV6f6Y7vF7kF4MikBb08ARA3OBOi1jQ9cJauyPHDvj9xv63D67wHUl-XXOUr610e9Aa9gHVKPux-csjJ9HFo2tRB_AQjPv2c</recordid><startdate>200605</startdate><enddate>200605</enddate><creator>Liu, L.M</creator><creator>Li, Y</creator><creator>Du, G.C</creator><creator>Chen, J</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>200605</creationdate><title>Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation</title><author>Liu, L.M ; Li, Y ; Du, G.C ; Chen, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4791-66d4eec01d106babd134765af886c9e1a4ec349cb1af32d879144a6fbe26f2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Antifungal Agents - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Candida glabrata</topic><topic>Candida glabrata - drug effects</topic><topic>Candida glabrata - genetics</topic><topic>Candida glabrata - growth &amp; development</topic><topic>Candida glabrata - metabolism</topic><topic>Culture Media</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Resistance, Fungal</topic><topic>F0F1‐ATPase</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glucose</topic><topic>glycolysis</topic><topic>Glycolysis - drug effects</topic><topic>glycolytic flux</topic><topic>H-transporting ATP synthase</topic><topic>Microbiology</topic><topic>Mutagenesis</topic><topic>mutants</topic><topic>neomycin‐resistant mutant</topic><topic>oligomycin</topic><topic>Oligomycins - pharmacology</topic><topic>Oxidative Phosphorylation</topic><topic>phosphofructokinases</topic><topic>Phosphorylation</topic><topic>pyruvate kinase</topic><topic>pyruvic acid</topic><topic>screening</topic><topic>Torulopsis glabrata</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, L.M</creatorcontrib><creatorcontrib>Li, Y</creatorcontrib><creatorcontrib>Du, G.C</creatorcontrib><creatorcontrib>Chen, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, L.M</au><au>Li, Y</au><au>Du, G.C</au><au>Chen, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2006-05</date><risdate>2006</risdate><volume>100</volume><issue>5</issue><spage>1043</spage><epage>1053</epage><pages>1043-1053</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><coden>JAMIFK</coden><abstract>This study aimed at further increasing the pyruvate productivity of a multi-vitamin auxotrophic yeast Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. We examined two strategies to decrease the activity of F₀F₁-ATPase. The strategies were to inhibit F₀F₁-ATPase activity by addition of oligomycin, or to disrupt F₀F₁-ATPase by screening neomycin-resistant mutant. The addition of 0·05 mmol l[superscript [-]1] oligomycin to the culture broth of T. glabrata CCTCC M202019 resulted in a significantly decreased intracellular ATP level (35·7%) and a significantly increased glucose consumption rate (49·7%). A neomycin-resistant mutant N07 was screened and selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata CCTCC M202019. Compared with the parent strain, the F₀F₁-ATPase activity of the mutant N07 decreased about 65%. As a consequence, intracellular ATP level of the mutant N07 decreased by 24%, which resulted in a decreased growth rate and growth yield. As expected, glucose consumption rate and pyruvate productivity of the mutant N07 increased by 34% and 42·9%, respectively. Consistently, the activities of key glycolytic enzymes of the mutant N07, including phosphofructokinase, pyruvate kinase and glyceraldyde-3-phosphate dehydrogenase, increased by 63·7%, 28·8% and 14·4%, respectively. In addition, activities of the key enzymes involved in electron transfer chain of the mutant N07 also increased. Impaired oxidative phosphorylation in T. glabrata leads to a decreased intracellular ATP production, thereby increasing the glycolytic flux. The strategy of redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation provides an alternative approach to enhance the glycolytic flux in eukaryotic micro-organisms.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16630005</pmid><doi>10.1111/j.1365-2672.2006.02871.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2006-05, Vol.100 (5), p.1043-1053
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_17213786
source MEDLINE; Access via Wiley Online Library; Oxford University Press Journals All Titles (1996-Current)
subjects adenosine triphosphate
Adenosine Triphosphate - biosynthesis
Antifungal Agents - pharmacology
Biological and medical sciences
Candida glabrata
Candida glabrata - drug effects
Candida glabrata - genetics
Candida glabrata - growth & development
Candida glabrata - metabolism
Culture Media
Dose-Response Relationship, Drug
Drug Resistance, Fungal
F0F1‐ATPase
Fundamental and applied biological sciences. Psychology
glucose
glycolysis
Glycolysis - drug effects
glycolytic flux
H-transporting ATP synthase
Microbiology
Mutagenesis
mutants
neomycin‐resistant mutant
oligomycin
Oligomycins - pharmacology
Oxidative Phosphorylation
phosphofructokinases
Phosphorylation
pyruvate kinase
pyruvic acid
screening
Torulopsis glabrata
yeasts
title Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20glycolytic%20flux%20in%20Torulopsis%20glabrata%20by%20redirecting%20ATP%20production%20from%20oxidative%20phosphorylation%20to%20substrate-level%20phosphorylation&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Liu,%20L.M&rft.date=2006-05&rft.volume=100&rft.issue=5&rft.spage=1043&rft.epage=1053&rft.pages=1043-1053&rft.issn=1364-5072&rft.eissn=1365-2672&rft.coden=JAMIFK&rft_id=info:doi/10.1111/j.1365-2672.2006.02871.x&rft_dat=%3Cproquest_cross%3E17213786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232936526&rft_id=info:pmid/16630005&rfr_iscdi=true