Vibration isolation by exploring bio-inspired structural nonlinearity
Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articu...
Gespeichert in:
Veröffentlicht in: | Bioinspiration & biomimetics 2015-10, Vol.10 (5), p.056015-056015 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 056015 |
---|---|
container_issue | 5 |
container_start_page | 056015 |
container_title | Bioinspiration & biomimetics |
container_volume | 10 |
creator | Wu, Zhijing Jing, Xingjian Bian, Jing Li, Fengming Allen, Robert |
description | Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice. |
doi_str_mv | 10.1088/1748-3190/10/5/056015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1721353516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721353516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-BCVHLzE7-9XNUUr9gIIX9bps0o1sSXfjbgLm35uQWrz1NDMvz8zAg9At4AfAUmawZDKlkOMMcMYzzAUGfobmx_z8Xz9DVzHuMOYsl-QSzYhgTNKczNH60xZBt9a7xEZfT13RJ-anqX2w7isprE-ti40NZpvENnRl2wVdJ8672jqjg237a3RR6Tqam0NdoI-n9fvqJd28Pb-uHjdpSSVrUxDAGRBZ8W1uKMEVAcZZWWlaUiaFztmQDZMgzOTUmGUBQheCiYqXhgKjC3Q_3W2C_-5MbNXextLUtXbGd1GBxJhxLIk8jS4JUE45iAHlE1oGH2MwlWqC3evQK8BqlK1GkWoUOSZcTbKHvbvDi67Ym-1x68_uAMAEWN-one-CG-ScOPoLOpKINA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721353516</pqid></control><display><type>article</type><title>Vibration isolation by exploring bio-inspired structural nonlinearity</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Wu, Zhijing ; Jing, Xingjian ; Bian, Jing ; Li, Fengming ; Allen, Robert</creator><creatorcontrib>Wu, Zhijing ; Jing, Xingjian ; Bian, Jing ; Li, Fengming ; Allen, Robert</creatorcontrib><description>Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.</description><identifier>ISSN: 1748-3190</identifier><identifier>ISSN: 1748-3182</identifier><identifier>EISSN: 1748-3190</identifier><identifier>DOI: 10.1088/1748-3190/10/5/056015</identifier><identifier>PMID: 26448392</identifier><identifier>CODEN: BBIICI</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adjustable ; Animals ; Asymmetry ; bio-inspired structures ; Biomimetic Materials - chemical synthesis ; Biomimetics ; Biomimetics - instrumentation ; Biomimetics - methods ; Birds - physiology ; Computer-Aided Design ; Elastic Modulus - physiology ; Energy Transfer - physiology ; Equipment Design ; Equipment Failure Analysis ; Extremities - physiology ; Joints - physiology ; Mathematical models ; Models, Biological ; Nonlinear Dynamics ; nonlinear stiffness ; Nonlinearity ; Stiffness ; Stress, Mechanical ; Vibration ; Vibration control ; Viscosity</subject><ispartof>Bioinspiration & biomimetics, 2015-10, Vol.10 (5), p.056015-056015</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</citedby><cites>FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-3190/10/5/056015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26448392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhijing</creatorcontrib><creatorcontrib>Jing, Xingjian</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Allen, Robert</creatorcontrib><title>Vibration isolation by exploring bio-inspired structural nonlinearity</title><title>Bioinspiration & biomimetics</title><addtitle>BB</addtitle><addtitle>Bioinspir. Biomim</addtitle><description>Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.</description><subject>Adjustable</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>bio-inspired structures</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetics</subject><subject>Biomimetics - instrumentation</subject><subject>Biomimetics - methods</subject><subject>Birds - physiology</subject><subject>Computer-Aided Design</subject><subject>Elastic Modulus - physiology</subject><subject>Energy Transfer - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Extremities - physiology</subject><subject>Joints - physiology</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>nonlinear stiffness</subject><subject>Nonlinearity</subject><subject>Stiffness</subject><subject>Stress, Mechanical</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Viscosity</subject><issn>1748-3190</issn><issn>1748-3182</issn><issn>1748-3190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-BCVHLzE7-9XNUUr9gIIX9bps0o1sSXfjbgLm35uQWrz1NDMvz8zAg9At4AfAUmawZDKlkOMMcMYzzAUGfobmx_z8Xz9DVzHuMOYsl-QSzYhgTNKczNH60xZBt9a7xEZfT13RJ-anqX2w7isprE-ti40NZpvENnRl2wVdJ8672jqjg237a3RR6Tqam0NdoI-n9fvqJd28Pb-uHjdpSSVrUxDAGRBZ8W1uKMEVAcZZWWlaUiaFztmQDZMgzOTUmGUBQheCiYqXhgKjC3Q_3W2C_-5MbNXextLUtXbGd1GBxJhxLIk8jS4JUE45iAHlE1oGH2MwlWqC3evQK8BqlK1GkWoUOSZcTbKHvbvDi67Ym-1x68_uAMAEWN-one-CG-ScOPoLOpKINA</recordid><startdate>20151008</startdate><enddate>20151008</enddate><creator>Wu, Zhijing</creator><creator>Jing, Xingjian</creator><creator>Bian, Jing</creator><creator>Li, Fengming</creator><creator>Allen, Robert</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151008</creationdate><title>Vibration isolation by exploring bio-inspired structural nonlinearity</title><author>Wu, Zhijing ; Jing, Xingjian ; Bian, Jing ; Li, Fengming ; Allen, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjustable</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>bio-inspired structures</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetics</topic><topic>Biomimetics - instrumentation</topic><topic>Biomimetics - methods</topic><topic>Birds - physiology</topic><topic>Computer-Aided Design</topic><topic>Elastic Modulus - physiology</topic><topic>Energy Transfer - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Extremities - physiology</topic><topic>Joints - physiology</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>nonlinear stiffness</topic><topic>Nonlinearity</topic><topic>Stiffness</topic><topic>Stress, Mechanical</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhijing</creatorcontrib><creatorcontrib>Jing, Xingjian</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Allen, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Bioinspiration & biomimetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhijing</au><au>Jing, Xingjian</au><au>Bian, Jing</au><au>Li, Fengming</au><au>Allen, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration isolation by exploring bio-inspired structural nonlinearity</atitle><jtitle>Bioinspiration & biomimetics</jtitle><stitle>BB</stitle><addtitle>Bioinspir. Biomim</addtitle><date>2015-10-08</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>056015</spage><epage>056015</epage><pages>056015-056015</pages><issn>1748-3190</issn><issn>1748-3182</issn><eissn>1748-3190</eissn><coden>BBIICI</coden><abstract>Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>26448392</pmid><doi>10.1088/1748-3190/10/5/056015</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3190 |
ispartof | Bioinspiration & biomimetics, 2015-10, Vol.10 (5), p.056015-056015 |
issn | 1748-3190 1748-3182 1748-3190 |
language | eng |
recordid | cdi_proquest_miscellaneous_1721353516 |
source | MEDLINE; Institute of Physics Journals |
subjects | Adjustable Animals Asymmetry bio-inspired structures Biomimetic Materials - chemical synthesis Biomimetics Biomimetics - instrumentation Biomimetics - methods Birds - physiology Computer-Aided Design Elastic Modulus - physiology Energy Transfer - physiology Equipment Design Equipment Failure Analysis Extremities - physiology Joints - physiology Mathematical models Models, Biological Nonlinear Dynamics nonlinear stiffness Nonlinearity Stiffness Stress, Mechanical Vibration Vibration control Viscosity |
title | Vibration isolation by exploring bio-inspired structural nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20isolation%20by%20exploring%20bio-inspired%20structural%20nonlinearity&rft.jtitle=Bioinspiration%20&%20biomimetics&rft.au=Wu,%20Zhijing&rft.date=2015-10-08&rft.volume=10&rft.issue=5&rft.spage=056015&rft.epage=056015&rft.pages=056015-056015&rft.issn=1748-3190&rft.eissn=1748-3190&rft.coden=BBIICI&rft_id=info:doi/10.1088/1748-3190/10/5/056015&rft_dat=%3Cproquest_pubme%3E1721353516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721353516&rft_id=info:pmid/26448392&rfr_iscdi=true |