Vibration isolation by exploring bio-inspired structural nonlinearity

Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinspiration & biomimetics 2015-10, Vol.10 (5), p.056015-056015
Hauptverfasser: Wu, Zhijing, Jing, Xingjian, Bian, Jing, Li, Fengming, Allen, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 056015
container_issue 5
container_start_page 056015
container_title Bioinspiration & biomimetics
container_volume 10
creator Wu, Zhijing
Jing, Xingjian
Bian, Jing
Li, Fengming
Allen, Robert
description Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.
doi_str_mv 10.1088/1748-3190/10/5/056015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1721353516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1721353516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRbK3-BCVHLzE7-9XNUUr9gIIX9bps0o1sSXfjbgLm35uQWrz1NDMvz8zAg9At4AfAUmawZDKlkOMMcMYzzAUGfobmx_z8Xz9DVzHuMOYsl-QSzYhgTNKczNH60xZBt9a7xEZfT13RJ-anqX2w7isprE-ti40NZpvENnRl2wVdJ8672jqjg237a3RR6Tqam0NdoI-n9fvqJd28Pb-uHjdpSSVrUxDAGRBZ8W1uKMEVAcZZWWlaUiaFztmQDZMgzOTUmGUBQheCiYqXhgKjC3Q_3W2C_-5MbNXextLUtXbGd1GBxJhxLIk8jS4JUE45iAHlE1oGH2MwlWqC3evQK8BqlK1GkWoUOSZcTbKHvbvDi67Ym-1x68_uAMAEWN-one-CG-ScOPoLOpKINA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1721353516</pqid></control><display><type>article</type><title>Vibration isolation by exploring bio-inspired structural nonlinearity</title><source>MEDLINE</source><source>Institute of Physics Journals</source><creator>Wu, Zhijing ; Jing, Xingjian ; Bian, Jing ; Li, Fengming ; Allen, Robert</creator><creatorcontrib>Wu, Zhijing ; Jing, Xingjian ; Bian, Jing ; Li, Fengming ; Allen, Robert</creatorcontrib><description>Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.</description><identifier>ISSN: 1748-3190</identifier><identifier>ISSN: 1748-3182</identifier><identifier>EISSN: 1748-3190</identifier><identifier>DOI: 10.1088/1748-3190/10/5/056015</identifier><identifier>PMID: 26448392</identifier><identifier>CODEN: BBIICI</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Adjustable ; Animals ; Asymmetry ; bio-inspired structures ; Biomimetic Materials - chemical synthesis ; Biomimetics ; Biomimetics - instrumentation ; Biomimetics - methods ; Birds - physiology ; Computer-Aided Design ; Elastic Modulus - physiology ; Energy Transfer - physiology ; Equipment Design ; Equipment Failure Analysis ; Extremities - physiology ; Joints - physiology ; Mathematical models ; Models, Biological ; Nonlinear Dynamics ; nonlinear stiffness ; Nonlinearity ; Stiffness ; Stress, Mechanical ; Vibration ; Vibration control ; Viscosity</subject><ispartof>Bioinspiration &amp; biomimetics, 2015-10, Vol.10 (5), p.056015-056015</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</citedby><cites>FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-3190/10/5/056015/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26448392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Zhijing</creatorcontrib><creatorcontrib>Jing, Xingjian</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Allen, Robert</creatorcontrib><title>Vibration isolation by exploring bio-inspired structural nonlinearity</title><title>Bioinspiration &amp; biomimetics</title><addtitle>BB</addtitle><addtitle>Bioinspir. Biomim</addtitle><description>Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.</description><subject>Adjustable</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>bio-inspired structures</subject><subject>Biomimetic Materials - chemical synthesis</subject><subject>Biomimetics</subject><subject>Biomimetics - instrumentation</subject><subject>Biomimetics - methods</subject><subject>Birds - physiology</subject><subject>Computer-Aided Design</subject><subject>Elastic Modulus - physiology</subject><subject>Energy Transfer - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Extremities - physiology</subject><subject>Joints - physiology</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>nonlinear stiffness</subject><subject>Nonlinearity</subject><subject>Stiffness</subject><subject>Stress, Mechanical</subject><subject>Vibration</subject><subject>Vibration control</subject><subject>Viscosity</subject><issn>1748-3190</issn><issn>1748-3182</issn><issn>1748-3190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1Lw0AQhhdRbK3-BCVHLzE7-9XNUUr9gIIX9bps0o1sSXfjbgLm35uQWrz1NDMvz8zAg9At4AfAUmawZDKlkOMMcMYzzAUGfobmx_z8Xz9DVzHuMOYsl-QSzYhgTNKczNH60xZBt9a7xEZfT13RJ-anqX2w7isprE-ti40NZpvENnRl2wVdJ8672jqjg237a3RR6Tqam0NdoI-n9fvqJd28Pb-uHjdpSSVrUxDAGRBZ8W1uKMEVAcZZWWlaUiaFztmQDZMgzOTUmGUBQheCiYqXhgKjC3Q_3W2C_-5MbNXextLUtXbGd1GBxJhxLIk8jS4JUE45iAHlE1oGH2MwlWqC3evQK8BqlK1GkWoUOSZcTbKHvbvDi67Ym-1x68_uAMAEWN-one-CG-ScOPoLOpKINA</recordid><startdate>20151008</startdate><enddate>20151008</enddate><creator>Wu, Zhijing</creator><creator>Jing, Xingjian</creator><creator>Bian, Jing</creator><creator>Li, Fengming</creator><creator>Allen, Robert</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20151008</creationdate><title>Vibration isolation by exploring bio-inspired structural nonlinearity</title><author>Wu, Zhijing ; Jing, Xingjian ; Bian, Jing ; Li, Fengming ; Allen, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-16154128f5d9e320f21454cfa3c3486a9420ffa3624e93ee7b16ab646f5ce3143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adjustable</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>bio-inspired structures</topic><topic>Biomimetic Materials - chemical synthesis</topic><topic>Biomimetics</topic><topic>Biomimetics - instrumentation</topic><topic>Biomimetics - methods</topic><topic>Birds - physiology</topic><topic>Computer-Aided Design</topic><topic>Elastic Modulus - physiology</topic><topic>Energy Transfer - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Extremities - physiology</topic><topic>Joints - physiology</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>nonlinear stiffness</topic><topic>Nonlinearity</topic><topic>Stiffness</topic><topic>Stress, Mechanical</topic><topic>Vibration</topic><topic>Vibration control</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Zhijing</creatorcontrib><creatorcontrib>Jing, Xingjian</creatorcontrib><creatorcontrib>Bian, Jing</creatorcontrib><creatorcontrib>Li, Fengming</creatorcontrib><creatorcontrib>Allen, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Bioinspiration &amp; biomimetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Zhijing</au><au>Jing, Xingjian</au><au>Bian, Jing</au><au>Li, Fengming</au><au>Allen, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vibration isolation by exploring bio-inspired structural nonlinearity</atitle><jtitle>Bioinspiration &amp; biomimetics</jtitle><stitle>BB</stitle><addtitle>Bioinspir. Biomim</addtitle><date>2015-10-08</date><risdate>2015</risdate><volume>10</volume><issue>5</issue><spage>056015</spage><epage>056015</epage><pages>056015-056015</pages><issn>1748-3190</issn><issn>1748-3182</issn><eissn>1748-3190</eissn><coden>BBIICI</coden><abstract>Inspired by the limb structures of animals insects in motion vibration control, a bio-inspired limb-like structure (LLS) is systematically studied for understanding and exploring its advantageous nonlinear function in passive vibration isolation. The bio-inspired system consists of asymmetric articulations (of different rod lengths) with inside vertical and horizontal springs (as animal muscle) of different linear stiffness. Mathematical modeling and analysis of the proposed LLS reveal that, (a) the system has very beneficial nonlinear stiffness which can provide flexible quasi-zero, zero and or negative stiffness, and these nonlinear stiffness properties are adjustable or designable with structure parameters; (b) the asymmetric rod-length ratio and spring-stiffness ratio present very beneficial factors for tuning system equivalent stiffness; (c) the system loading capacity is also adjustable with the structure parameters which presents another flexible benefit in application. Experiments and comparisons with existing quasi-zero-stiffness isolators validate the advantageous features above, and some discussions are also given about how to select structural parameters for practical applications. The results would provide an innovative bio-inspired solution to passive vibration control in various engineering practice.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>26448392</pmid><doi>10.1088/1748-3190/10/5/056015</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3190
ispartof Bioinspiration & biomimetics, 2015-10, Vol.10 (5), p.056015-056015
issn 1748-3190
1748-3182
1748-3190
language eng
recordid cdi_proquest_miscellaneous_1721353516
source MEDLINE; Institute of Physics Journals
subjects Adjustable
Animals
Asymmetry
bio-inspired structures
Biomimetic Materials - chemical synthesis
Biomimetics
Biomimetics - instrumentation
Biomimetics - methods
Birds - physiology
Computer-Aided Design
Elastic Modulus - physiology
Energy Transfer - physiology
Equipment Design
Equipment Failure Analysis
Extremities - physiology
Joints - physiology
Mathematical models
Models, Biological
Nonlinear Dynamics
nonlinear stiffness
Nonlinearity
Stiffness
Stress, Mechanical
Vibration
Vibration control
Viscosity
title Vibration isolation by exploring bio-inspired structural nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vibration%20isolation%20by%20exploring%20bio-inspired%20structural%20nonlinearity&rft.jtitle=Bioinspiration%20&%20biomimetics&rft.au=Wu,%20Zhijing&rft.date=2015-10-08&rft.volume=10&rft.issue=5&rft.spage=056015&rft.epage=056015&rft.pages=056015-056015&rft.issn=1748-3190&rft.eissn=1748-3190&rft.coden=BBIICI&rft_id=info:doi/10.1088/1748-3190/10/5/056015&rft_dat=%3Cproquest_pubme%3E1721353516%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1721353516&rft_id=info:pmid/26448392&rfr_iscdi=true