Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar
In August 1998, 3000 Atlantic salmon Salmo salar L. parr were divided into 7 groups with 2 replicates. Every 6 wk until March of the following year 1 group was vaccinated. One group was held as an unvaccinated control. The fish were transferred to seawater in May 1999, and slaughtered in February 20...
Gespeichert in:
Veröffentlicht in: | Diseases of aquatic organisms 2006-04, Vol.69 (2-3), p.239-248 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 248 |
---|---|
container_issue | 2-3 |
container_start_page | 239 |
container_title | Diseases of aquatic organisms |
container_volume | 69 |
creator | BERG, Arne RØDSETH, Odd Magne TANGERAS, Arild HANSEN, Tom |
description | In August 1998, 3000 Atlantic salmon Salmo salar L. parr were divided into 7 groups with 2 replicates. Every 6 wk until March of the following year 1 group was vaccinated. One group was held as an unvaccinated control. The fish were transferred to seawater in May 1999, and slaughtered in February 2000. Temperature, fish size and photoperiod at vaccination, and the time between vaccination and sea transfer thus varied among the groups. In all vaccinated groups, growth was reduced for 1 to 2 mo following vaccination. Intra-abdominal lesions developed faster, and stabilised at a higher level in the groups vaccinated early at the highest temperature and the smallest fish size. Growth in seawater was influenced by the time of vaccination. At the end of the experiment, the group vaccinated last (MAR) was the heaviest of the vaccinated groups (4.0 kg), and the group vaccinated first, i.e. in August (AUG) was smallest (3.2 kg). Growth rate in seawater differed only in the summer when specific growth rate was above 1.45 in all groups. There was a correlation between adhesion, condition factor and number of weeks from vaccination to sea transfer. The AUG group had the highest condition factor, with a top level of 1.64 in autumn, and this group also displayed the highest incidence of deformed vertebra. The experiment shows that side effects of vaccination can be significantly reduced when planning the vaccination strategy, by taking environmental factors and fish biology into consideration. |
doi_str_mv | 10.3354/dao069239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17205628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17205628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-3e69fa35f4a5e4fba31894fd3a1d0eb1c85d831dcf384552f0606f5f324f90b73</originalsourceid><addsrcrecordid>eNpF0E1LAzEQBuAgitbqwT8guSgIriabTbJ7LOIXFDyo52WaD43sJjXZrfjvTWmxp2HgmZfhReiMkhvGeHWrIRDRlKzZQxMqqCgor8k-mhAqZcEpYUfoOKUvQmjZcHqIjqiQZcVFPUHjm-sNDhavQCnnYXDBY-dtNxqvTMLarEwXlr3xw1qB_jQpk3SNP2L4GT4xeI3TMl922doQeze4fOc8ng0d-MEpnKDrc-rreqwXiCfowEKXzOl2TtH7w_3b3VMxf3l8vpvNC8VkMxTMiMYC47YCbiq7AEbrprKaAdXELKiqua4Z1cqyuuK8tEQQYbllZWUbspBsii43ucsYvkeThrZ3SZkuP2bCmFoqS8JFWWd4tYEqhpSise0yuh7ib0tJu-64_e842_Nt6Ljojd7JbakZXGwBJAWdjeCVSzsnZVVL2bA_AZKF_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17205628</pqid></control><display><type>article</type><title>Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar</title><source>MEDLINE</source><source>Inter-Research Science Center Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>BERG, Arne ; RØDSETH, Odd Magne ; TANGERAS, Arild ; HANSEN, Tom</creator><creatorcontrib>BERG, Arne ; RØDSETH, Odd Magne ; TANGERAS, Arild ; HANSEN, Tom</creatorcontrib><description>In August 1998, 3000 Atlantic salmon Salmo salar L. parr were divided into 7 groups with 2 replicates. Every 6 wk until March of the following year 1 group was vaccinated. One group was held as an unvaccinated control. The fish were transferred to seawater in May 1999, and slaughtered in February 2000. Temperature, fish size and photoperiod at vaccination, and the time between vaccination and sea transfer thus varied among the groups. In all vaccinated groups, growth was reduced for 1 to 2 mo following vaccination. Intra-abdominal lesions developed faster, and stabilised at a higher level in the groups vaccinated early at the highest temperature and the smallest fish size. Growth in seawater was influenced by the time of vaccination. At the end of the experiment, the group vaccinated last (MAR) was the heaviest of the vaccinated groups (4.0 kg), and the group vaccinated first, i.e. in August (AUG) was smallest (3.2 kg). Growth rate in seawater differed only in the summer when specific growth rate was above 1.45 in all groups. There was a correlation between adhesion, condition factor and number of weeks from vaccination to sea transfer. The AUG group had the highest condition factor, with a top level of 1.64 in autumn, and this group also displayed the highest incidence of deformed vertebra. The experiment shows that side effects of vaccination can be significantly reduced when planning the vaccination strategy, by taking environmental factors and fish biology into consideration.</description><identifier>ISSN: 0177-5103</identifier><identifier>EISSN: 1616-1580</identifier><identifier>DOI: 10.3354/dao069239</identifier><identifier>PMID: 16724568</identifier><identifier>CODEN: DAOREO</identifier><language>eng</language><publisher>Oldendorf: Inter-Research</publisher><subject>Aeromonas salmonicida - immunology ; Aliivibrio salmonicida - immunology ; Animal aquaculture ; Animal productions ; Animals ; Antibodies, Bacterial - blood ; Biological and medical sciences ; Body Size ; Fundamental and applied biological sciences. Psychology ; Furunculosis - prevention & control ; Furunculosis - veterinary ; Injections, Intraperitoneal - adverse effects ; Injections, Intraperitoneal - veterinary ; Marine ; Peritoneal Diseases - etiology ; Peritoneal Diseases - pathology ; Peritoneal Diseases - veterinary ; Pisciculture ; Salmo salar ; Salmo salar - growth & development ; Salmo salar - immunology ; Seawater ; Spine - abnormalities ; Spine - pathology ; Statistics as Topic ; Temperature ; Time Factors ; Tissue Adhesions - veterinary ; Tomography, X-Ray Computed - veterinary ; Vaccination - adverse effects ; Vaccination - veterinary ; Vertebrate aquaculture</subject><ispartof>Diseases of aquatic organisms, 2006-04, Vol.69 (2-3), p.239-248</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-3e69fa35f4a5e4fba31894fd3a1d0eb1c85d831dcf384552f0606f5f324f90b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3759,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17748779$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16724568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BERG, Arne</creatorcontrib><creatorcontrib>RØDSETH, Odd Magne</creatorcontrib><creatorcontrib>TANGERAS, Arild</creatorcontrib><creatorcontrib>HANSEN, Tom</creatorcontrib><title>Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar</title><title>Diseases of aquatic organisms</title><addtitle>Dis Aquat Organ</addtitle><description>In August 1998, 3000 Atlantic salmon Salmo salar L. parr were divided into 7 groups with 2 replicates. Every 6 wk until March of the following year 1 group was vaccinated. One group was held as an unvaccinated control. The fish were transferred to seawater in May 1999, and slaughtered in February 2000. Temperature, fish size and photoperiod at vaccination, and the time between vaccination and sea transfer thus varied among the groups. In all vaccinated groups, growth was reduced for 1 to 2 mo following vaccination. Intra-abdominal lesions developed faster, and stabilised at a higher level in the groups vaccinated early at the highest temperature and the smallest fish size. Growth in seawater was influenced by the time of vaccination. At the end of the experiment, the group vaccinated last (MAR) was the heaviest of the vaccinated groups (4.0 kg), and the group vaccinated first, i.e. in August (AUG) was smallest (3.2 kg). Growth rate in seawater differed only in the summer when specific growth rate was above 1.45 in all groups. There was a correlation between adhesion, condition factor and number of weeks from vaccination to sea transfer. The AUG group had the highest condition factor, with a top level of 1.64 in autumn, and this group also displayed the highest incidence of deformed vertebra. The experiment shows that side effects of vaccination can be significantly reduced when planning the vaccination strategy, by taking environmental factors and fish biology into consideration.</description><subject>Aeromonas salmonicida - immunology</subject><subject>Aliivibrio salmonicida - immunology</subject><subject>Animal aquaculture</subject><subject>Animal productions</subject><subject>Animals</subject><subject>Antibodies, Bacterial - blood</subject><subject>Biological and medical sciences</subject><subject>Body Size</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Furunculosis - prevention & control</subject><subject>Furunculosis - veterinary</subject><subject>Injections, Intraperitoneal - adverse effects</subject><subject>Injections, Intraperitoneal - veterinary</subject><subject>Marine</subject><subject>Peritoneal Diseases - etiology</subject><subject>Peritoneal Diseases - pathology</subject><subject>Peritoneal Diseases - veterinary</subject><subject>Pisciculture</subject><subject>Salmo salar</subject><subject>Salmo salar - growth & development</subject><subject>Salmo salar - immunology</subject><subject>Seawater</subject><subject>Spine - abnormalities</subject><subject>Spine - pathology</subject><subject>Statistics as Topic</subject><subject>Temperature</subject><subject>Time Factors</subject><subject>Tissue Adhesions - veterinary</subject><subject>Tomography, X-Ray Computed - veterinary</subject><subject>Vaccination - adverse effects</subject><subject>Vaccination - veterinary</subject><subject>Vertebrate aquaculture</subject><issn>0177-5103</issn><issn>1616-1580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0E1LAzEQBuAgitbqwT8guSgIriabTbJ7LOIXFDyo52WaD43sJjXZrfjvTWmxp2HgmZfhReiMkhvGeHWrIRDRlKzZQxMqqCgor8k-mhAqZcEpYUfoOKUvQmjZcHqIjqiQZcVFPUHjm-sNDhavQCnnYXDBY-dtNxqvTMLarEwXlr3xw1qB_jQpk3SNP2L4GT4xeI3TMl922doQeze4fOc8ng0d-MEpnKDrc-rreqwXiCfowEKXzOl2TtH7w_3b3VMxf3l8vpvNC8VkMxTMiMYC47YCbiq7AEbrprKaAdXELKiqua4Z1cqyuuK8tEQQYbllZWUbspBsii43ucsYvkeThrZ3SZkuP2bCmFoqS8JFWWd4tYEqhpSise0yuh7ib0tJu-64_e842_Nt6Ljojd7JbakZXGwBJAWdjeCVSzsnZVVL2bA_AZKF_w</recordid><startdate>20060406</startdate><enddate>20060406</enddate><creator>BERG, Arne</creator><creator>RØDSETH, Odd Magne</creator><creator>TANGERAS, Arild</creator><creator>HANSEN, Tom</creator><general>Inter-Research</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20060406</creationdate><title>Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar</title><author>BERG, Arne ; RØDSETH, Odd Magne ; TANGERAS, Arild ; HANSEN, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-3e69fa35f4a5e4fba31894fd3a1d0eb1c85d831dcf384552f0606f5f324f90b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aeromonas salmonicida - immunology</topic><topic>Aliivibrio salmonicida - immunology</topic><topic>Animal aquaculture</topic><topic>Animal productions</topic><topic>Animals</topic><topic>Antibodies, Bacterial - blood</topic><topic>Biological and medical sciences</topic><topic>Body Size</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Furunculosis - prevention & control</topic><topic>Furunculosis - veterinary</topic><topic>Injections, Intraperitoneal - adverse effects</topic><topic>Injections, Intraperitoneal - veterinary</topic><topic>Marine</topic><topic>Peritoneal Diseases - etiology</topic><topic>Peritoneal Diseases - pathology</topic><topic>Peritoneal Diseases - veterinary</topic><topic>Pisciculture</topic><topic>Salmo salar</topic><topic>Salmo salar - growth & development</topic><topic>Salmo salar - immunology</topic><topic>Seawater</topic><topic>Spine - abnormalities</topic><topic>Spine - pathology</topic><topic>Statistics as Topic</topic><topic>Temperature</topic><topic>Time Factors</topic><topic>Tissue Adhesions - veterinary</topic><topic>Tomography, X-Ray Computed - veterinary</topic><topic>Vaccination - adverse effects</topic><topic>Vaccination - veterinary</topic><topic>Vertebrate aquaculture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BERG, Arne</creatorcontrib><creatorcontrib>RØDSETH, Odd Magne</creatorcontrib><creatorcontrib>TANGERAS, Arild</creatorcontrib><creatorcontrib>HANSEN, Tom</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Diseases of aquatic organisms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BERG, Arne</au><au>RØDSETH, Odd Magne</au><au>TANGERAS, Arild</au><au>HANSEN, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar</atitle><jtitle>Diseases of aquatic organisms</jtitle><addtitle>Dis Aquat Organ</addtitle><date>2006-04-06</date><risdate>2006</risdate><volume>69</volume><issue>2-3</issue><spage>239</spage><epage>248</epage><pages>239-248</pages><issn>0177-5103</issn><eissn>1616-1580</eissn><coden>DAOREO</coden><abstract>In August 1998, 3000 Atlantic salmon Salmo salar L. parr were divided into 7 groups with 2 replicates. Every 6 wk until March of the following year 1 group was vaccinated. One group was held as an unvaccinated control. The fish were transferred to seawater in May 1999, and slaughtered in February 2000. Temperature, fish size and photoperiod at vaccination, and the time between vaccination and sea transfer thus varied among the groups. In all vaccinated groups, growth was reduced for 1 to 2 mo following vaccination. Intra-abdominal lesions developed faster, and stabilised at a higher level in the groups vaccinated early at the highest temperature and the smallest fish size. Growth in seawater was influenced by the time of vaccination. At the end of the experiment, the group vaccinated last (MAR) was the heaviest of the vaccinated groups (4.0 kg), and the group vaccinated first, i.e. in August (AUG) was smallest (3.2 kg). Growth rate in seawater differed only in the summer when specific growth rate was above 1.45 in all groups. There was a correlation between adhesion, condition factor and number of weeks from vaccination to sea transfer. The AUG group had the highest condition factor, with a top level of 1.64 in autumn, and this group also displayed the highest incidence of deformed vertebra. The experiment shows that side effects of vaccination can be significantly reduced when planning the vaccination strategy, by taking environmental factors and fish biology into consideration.</abstract><cop>Oldendorf</cop><pub>Inter-Research</pub><pmid>16724568</pmid><doi>10.3354/dao069239</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-5103 |
ispartof | Diseases of aquatic organisms, 2006-04, Vol.69 (2-3), p.239-248 |
issn | 0177-5103 1616-1580 |
language | eng |
recordid | cdi_proquest_miscellaneous_17205628 |
source | MEDLINE; Inter-Research Science Center Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aeromonas salmonicida - immunology Aliivibrio salmonicida - immunology Animal aquaculture Animal productions Animals Antibodies, Bacterial - blood Biological and medical sciences Body Size Fundamental and applied biological sciences. Psychology Furunculosis - prevention & control Furunculosis - veterinary Injections, Intraperitoneal - adverse effects Injections, Intraperitoneal - veterinary Marine Peritoneal Diseases - etiology Peritoneal Diseases - pathology Peritoneal Diseases - veterinary Pisciculture Salmo salar Salmo salar - growth & development Salmo salar - immunology Seawater Spine - abnormalities Spine - pathology Statistics as Topic Temperature Time Factors Tissue Adhesions - veterinary Tomography, X-Ray Computed - veterinary Vaccination - adverse effects Vaccination - veterinary Vertebrate aquaculture |
title | Time of vaccination influences development of adhesions, growth and spinal deformities in Atlantic salmon Salmo salar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20of%20vaccination%20influences%20development%20of%20adhesions,%20growth%20and%20spinal%20deformities%20in%20Atlantic%20salmon%20Salmo%20salar&rft.jtitle=Diseases%20of%20aquatic%20organisms&rft.au=BERG,%20Arne&rft.date=2006-04-06&rft.volume=69&rft.issue=2-3&rft.spage=239&rft.epage=248&rft.pages=239-248&rft.issn=0177-5103&rft.eissn=1616-1580&rft.coden=DAOREO&rft_id=info:doi/10.3354/dao069239&rft_dat=%3Cproquest_cross%3E17205628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17205628&rft_id=info:pmid/16724568&rfr_iscdi=true |