Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine
Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtaine...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 1999-01, Vol.31 (2), p.443-450 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 2 |
container_start_page | 443 |
container_title | Molecular microbiology |
container_volume | 31 |
creator | De Boer, Gert‐Jan Pielage, Gerlof J. A. Nijkamp, H. John J. Slabas, Antoni R. Rafferty, John B. Baldock, Clair Rice, David W. Stuitje, Antoine R. |
description | Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme. |
doi_str_mv | 10.1046/j.1365-2958.1999.01182.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17205535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17205535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</originalsourceid><addsrcrecordid>eNqNkc1O3DAUha2KqkxpXwFZLNgl-Gfi2AsWCNEWiVE3rdRVLce-UzzyxGAngrDiEfqMfZI6DKoqVnhjS_c7R9fnIIQpqSlZipNNTbloKqYaWVOlVE0olay-f4MW_wZ7aEFUQyou2Y999D7nDSGUE8HfoX1KCGuVYAv0cxUD2DGYhH9BD4O32PQmTNlnHNcY-jiFP4-_jZ0CtiYlDwnfpDiA73ECN9rBZMC-v_adH3zscTdh582D6WLyPXxAb9cmZPj4fB-g758uvp1_qa6-fr48P7uq7LLlrGpFZyhzyghGnbOklVRx13WSmTKXprXSOS5su3RAW2agFcIWTTnCyQb4ATre-ZbdbkfIg976bCEE00Mcsy4i0jS8KeDRC3ATx1R-XBglmpLikhZI7iCbYs4J1vom-a1Jk6ZEzwXojZ5z1nPOei5APxWg74v08Nl_7Lbg_hPuEi_A6Q648wGmVxvr1epyfvG_KtKW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196518241</pqid></control><display><type>article</type><title>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>De Boer, Gert‐Jan ; Pielage, Gerlof J. A. ; Nijkamp, H. John J. ; Slabas, Antoni R. ; Rafferty, John B. ; Baldock, Clair ; Rice, David W. ; Stuitje, Antoine R.</creator><creatorcontrib>De Boer, Gert‐Jan ; Pielage, Gerlof J. A. ; Nijkamp, H. John J. ; Slabas, Antoni R. ; Rafferty, John B. ; Baldock, Clair ; Rice, David W. ; Stuitje, Antoine R.</creatorcontrib><description>Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.1999.01182.x</identifier><identifier>PMID: 10027962</identifier><language>eng</language><publisher>Oxford BSL: Blackwell Science Ltd</publisher><subject>Alleles ; Amino Acid Substitution ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; Boron Compounds - pharmacology ; Catalysis ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors - metabolism ; Enzyme Inhibitors - pharmacology ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Mutagenesis, Site-Directed ; Mycobacterium tuberculosis ; Oxidoreductases - antagonists & inhibitors ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Sequence Analysis, DNA</subject><ispartof>Molecular microbiology, 1999-01, Vol.31 (2), p.443-450</ispartof><rights>Blackwell Science Ltd, Oxford</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jan 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</citedby><cites>FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.1999.01182.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.1999.01182.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10027962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Boer, Gert‐Jan</creatorcontrib><creatorcontrib>Pielage, Gerlof J. A.</creatorcontrib><creatorcontrib>Nijkamp, H. John J.</creatorcontrib><creatorcontrib>Slabas, Antoni R.</creatorcontrib><creatorcontrib>Rafferty, John B.</creatorcontrib><creatorcontrib>Baldock, Clair</creatorcontrib><creatorcontrib>Rice, David W.</creatorcontrib><creatorcontrib>Stuitje, Antoine R.</creatorcontrib><title>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.</description><subject>Alleles</subject><subject>Amino Acid Substitution</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Boron Compounds - pharmacology</subject><subject>Catalysis</subject><subject>Drug Resistance, Microbial</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mycobacterium tuberculosis</subject><subject>Oxidoreductases - antagonists & inhibitors</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Sequence Analysis, DNA</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAUha2KqkxpXwFZLNgl-Gfi2AsWCNEWiVE3rdRVLce-UzzyxGAngrDiEfqMfZI6DKoqVnhjS_c7R9fnIIQpqSlZipNNTbloKqYaWVOlVE0olay-f4MW_wZ7aEFUQyou2Y999D7nDSGUE8HfoX1KCGuVYAv0cxUD2DGYhH9BD4O32PQmTNlnHNcY-jiFP4-_jZ0CtiYlDwnfpDiA73ECN9rBZMC-v_adH3zscTdh582D6WLyPXxAb9cmZPj4fB-g758uvp1_qa6-fr48P7uq7LLlrGpFZyhzyghGnbOklVRx13WSmTKXprXSOS5su3RAW2agFcIWTTnCyQb4ATre-ZbdbkfIg976bCEE00Mcsy4i0jS8KeDRC3ATx1R-XBglmpLikhZI7iCbYs4J1vom-a1Jk6ZEzwXojZ5z1nPOei5APxWg74v08Nl_7Lbg_hPuEi_A6Q648wGmVxvr1epyfvG_KtKW4w</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>De Boer, Gert‐Jan</creator><creator>Pielage, Gerlof J. A.</creator><creator>Nijkamp, H. John J.</creator><creator>Slabas, Antoni R.</creator><creator>Rafferty, John B.</creator><creator>Baldock, Clair</creator><creator>Rice, David W.</creator><creator>Stuitje, Antoine R.</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope></search><sort><creationdate>199901</creationdate><title>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</title><author>De Boer, Gert‐Jan ; Pielage, Gerlof J. A. ; Nijkamp, H. John J. ; Slabas, Antoni R. ; Rafferty, John B. ; Baldock, Clair ; Rice, David W. ; Stuitje, Antoine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alleles</topic><topic>Amino Acid Substitution</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Boron Compounds - pharmacology</topic><topic>Catalysis</topic><topic>Drug Resistance, Microbial</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mycobacterium tuberculosis</topic><topic>Oxidoreductases - antagonists & inhibitors</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Boer, Gert‐Jan</creatorcontrib><creatorcontrib>Pielage, Gerlof J. A.</creatorcontrib><creatorcontrib>Nijkamp, H. John J.</creatorcontrib><creatorcontrib>Slabas, Antoni R.</creatorcontrib><creatorcontrib>Rafferty, John B.</creatorcontrib><creatorcontrib>Baldock, Clair</creatorcontrib><creatorcontrib>Rice, David W.</creatorcontrib><creatorcontrib>Stuitje, Antoine R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Boer, Gert‐Jan</au><au>Pielage, Gerlof J. A.</au><au>Nijkamp, H. John J.</au><au>Slabas, Antoni R.</au><au>Rafferty, John B.</au><au>Baldock, Clair</au><au>Rice, David W.</au><au>Stuitje, Antoine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>1999-01</date><risdate>1999</risdate><volume>31</volume><issue>2</issue><spage>443</spage><epage>450</epage><pages>443-450</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.</abstract><cop>Oxford BSL</cop><pub>Blackwell Science Ltd</pub><pmid>10027962</pmid><doi>10.1046/j.1365-2958.1999.01182.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 1999-01, Vol.31 (2), p.443-450 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_17205535 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Alleles Amino Acid Substitution Anti-Bacterial Agents - metabolism Anti-Bacterial Agents - pharmacology Boron Compounds - pharmacology Catalysis Drug Resistance, Microbial Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) Enzyme Inhibitors - metabolism Enzyme Inhibitors - pharmacology Escherichia coli Escherichia coli - drug effects Escherichia coli - enzymology Escherichia coli - genetics Mutagenesis, Site-Directed Mycobacterium tuberculosis Oxidoreductases - antagonists & inhibitors Oxidoreductases - genetics Oxidoreductases - metabolism Sequence Analysis, DNA |
title | Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20genetic%20analysis%20of%20enoyl%E2%80%90acyl%20carrier%20protein%20reductase%20inhibition%20by%20diazaborine&rft.jtitle=Molecular%20microbiology&rft.au=De%20Boer,%20Gert%E2%80%90Jan&rft.date=1999-01&rft.volume=31&rft.issue=2&rft.spage=443&rft.epage=450&rft.pages=443-450&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.1999.01182.x&rft_dat=%3Cproquest_cross%3E17205535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196518241&rft_id=info:pmid/10027962&rfr_iscdi=true |