Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine

Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtaine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 1999-01, Vol.31 (2), p.443-450
Hauptverfasser: De Boer, Gert‐Jan, Pielage, Gerlof J. A., Nijkamp, H. John J., Slabas, Antoni R., Rafferty, John B., Baldock, Clair, Rice, David W., Stuitje, Antoine R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 2
container_start_page 443
container_title Molecular microbiology
container_volume 31
creator De Boer, Gert‐Jan
Pielage, Gerlof J. A.
Nijkamp, H. John J.
Slabas, Antoni R.
Rafferty, John B.
Baldock, Clair
Rice, David W.
Stuitje, Antoine R.
description Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.
doi_str_mv 10.1046/j.1365-2958.1999.01182.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17205535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17205535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</originalsourceid><addsrcrecordid>eNqNkc1O3DAUha2KqkxpXwFZLNgl-Gfi2AsWCNEWiVE3rdRVLce-UzzyxGAngrDiEfqMfZI6DKoqVnhjS_c7R9fnIIQpqSlZipNNTbloKqYaWVOlVE0olay-f4MW_wZ7aEFUQyou2Y999D7nDSGUE8HfoX1KCGuVYAv0cxUD2DGYhH9BD4O32PQmTNlnHNcY-jiFP4-_jZ0CtiYlDwnfpDiA73ECN9rBZMC-v_adH3zscTdh582D6WLyPXxAb9cmZPj4fB-g758uvp1_qa6-fr48P7uq7LLlrGpFZyhzyghGnbOklVRx13WSmTKXprXSOS5su3RAW2agFcIWTTnCyQb4ATre-ZbdbkfIg976bCEE00Mcsy4i0jS8KeDRC3ATx1R-XBglmpLikhZI7iCbYs4J1vom-a1Jk6ZEzwXojZ5z1nPOei5APxWg74v08Nl_7Lbg_hPuEi_A6Q648wGmVxvr1epyfvG_KtKW4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196518241</pqid></control><display><type>article</type><title>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>De Boer, Gert‐Jan ; Pielage, Gerlof J. A. ; Nijkamp, H. John J. ; Slabas, Antoni R. ; Rafferty, John B. ; Baldock, Clair ; Rice, David W. ; Stuitje, Antoine R.</creator><creatorcontrib>De Boer, Gert‐Jan ; Pielage, Gerlof J. A. ; Nijkamp, H. John J. ; Slabas, Antoni R. ; Rafferty, John B. ; Baldock, Clair ; Rice, David W. ; Stuitje, Antoine R.</creatorcontrib><description>Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.1999.01182.x</identifier><identifier>PMID: 10027962</identifier><language>eng</language><publisher>Oxford BSL: Blackwell Science Ltd</publisher><subject>Alleles ; Amino Acid Substitution ; Anti-Bacterial Agents - metabolism ; Anti-Bacterial Agents - pharmacology ; Boron Compounds - pharmacology ; Catalysis ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors - metabolism ; Enzyme Inhibitors - pharmacology ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Mutagenesis, Site-Directed ; Mycobacterium tuberculosis ; Oxidoreductases - antagonists &amp; inhibitors ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Sequence Analysis, DNA</subject><ispartof>Molecular microbiology, 1999-01, Vol.31 (2), p.443-450</ispartof><rights>Blackwell Science Ltd, Oxford</rights><rights>Copyright Blackwell Scientific Publications Ltd. Jan 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</citedby><cites>FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.1999.01182.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.1999.01182.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10027962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De Boer, Gert‐Jan</creatorcontrib><creatorcontrib>Pielage, Gerlof J. A.</creatorcontrib><creatorcontrib>Nijkamp, H. John J.</creatorcontrib><creatorcontrib>Slabas, Antoni R.</creatorcontrib><creatorcontrib>Rafferty, John B.</creatorcontrib><creatorcontrib>Baldock, Clair</creatorcontrib><creatorcontrib>Rice, David W.</creatorcontrib><creatorcontrib>Stuitje, Antoine R.</creatorcontrib><title>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.</description><subject>Alleles</subject><subject>Amino Acid Substitution</subject><subject>Anti-Bacterial Agents - metabolism</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Boron Compounds - pharmacology</subject><subject>Catalysis</subject><subject>Drug Resistance, Microbial</subject><subject>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)</subject><subject>Enzyme Inhibitors - metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mycobacterium tuberculosis</subject><subject>Oxidoreductases - antagonists &amp; inhibitors</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Sequence Analysis, DNA</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1O3DAUha2KqkxpXwFZLNgl-Gfi2AsWCNEWiVE3rdRVLce-UzzyxGAngrDiEfqMfZI6DKoqVnhjS_c7R9fnIIQpqSlZipNNTbloKqYaWVOlVE0olay-f4MW_wZ7aEFUQyou2Y999D7nDSGUE8HfoX1KCGuVYAv0cxUD2DGYhH9BD4O32PQmTNlnHNcY-jiFP4-_jZ0CtiYlDwnfpDiA73ECN9rBZMC-v_adH3zscTdh582D6WLyPXxAb9cmZPj4fB-g758uvp1_qa6-fr48P7uq7LLlrGpFZyhzyghGnbOklVRx13WSmTKXprXSOS5su3RAW2agFcIWTTnCyQb4ATre-ZbdbkfIg976bCEE00Mcsy4i0jS8KeDRC3ATx1R-XBglmpLikhZI7iCbYs4J1vom-a1Jk6ZEzwXojZ5z1nPOei5APxWg74v08Nl_7Lbg_hPuEi_A6Q648wGmVxvr1epyfvG_KtKW4w</recordid><startdate>199901</startdate><enddate>199901</enddate><creator>De Boer, Gert‐Jan</creator><creator>Pielage, Gerlof J. A.</creator><creator>Nijkamp, H. John J.</creator><creator>Slabas, Antoni R.</creator><creator>Rafferty, John B.</creator><creator>Baldock, Clair</creator><creator>Rice, David W.</creator><creator>Stuitje, Antoine R.</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope></search><sort><creationdate>199901</creationdate><title>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</title><author>De Boer, Gert‐Jan ; Pielage, Gerlof J. A. ; Nijkamp, H. John J. ; Slabas, Antoni R. ; Rafferty, John B. ; Baldock, Clair ; Rice, David W. ; Stuitje, Antoine R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4732-76ba12d9a621ddc078193dbb82a4738a7c8dd36c74de172ae766c6baaaa6d85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Alleles</topic><topic>Amino Acid Substitution</topic><topic>Anti-Bacterial Agents - metabolism</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Boron Compounds - pharmacology</topic><topic>Catalysis</topic><topic>Drug Resistance, Microbial</topic><topic>Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)</topic><topic>Enzyme Inhibitors - metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mycobacterium tuberculosis</topic><topic>Oxidoreductases - antagonists &amp; inhibitors</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Sequence Analysis, DNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Boer, Gert‐Jan</creatorcontrib><creatorcontrib>Pielage, Gerlof J. A.</creatorcontrib><creatorcontrib>Nijkamp, H. John J.</creatorcontrib><creatorcontrib>Slabas, Antoni R.</creatorcontrib><creatorcontrib>Rafferty, John B.</creatorcontrib><creatorcontrib>Baldock, Clair</creatorcontrib><creatorcontrib>Rice, David W.</creatorcontrib><creatorcontrib>Stuitje, Antoine R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Boer, Gert‐Jan</au><au>Pielage, Gerlof J. A.</au><au>Nijkamp, H. John J.</au><au>Slabas, Antoni R.</au><au>Rafferty, John B.</au><au>Baldock, Clair</au><au>Rice, David W.</au><au>Stuitje, Antoine R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>1999-01</date><risdate>1999</risdate><volume>31</volume><issue>2</issue><spage>443</spage><epage>450</epage><pages>443-450</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Diazaborine and isoniazid are, at first sight, unrelated anti‐bacterial agents that inhibit the enoyl‐ACP reductase (ENR) of Escherichia coli and Mycobacterium tuberculosis respectively. The crystal structures of these enzymes including that of the diazaborine‐inhibited E. coli ENR have been obtained at high resolution. Site‐directed mutagenesis was used to study the importance of amino acid residues in diazaborine susceptibility and enzyme function. The results show that drug binding and inhibition require the presence of a glycine residue at position 93 of E. coli ENR or at the structurally equivalent position in the plant homologue, which is naturally resistant to the drug. The data confirm the hypothesis that any amino acid side‐chain other than hydrogen at this position within the three‐dimensional structure of these enzymes will affect diazaborine resistance by encroaching into the drug binding site. Substitutions of Gly‐93 by amino acids with small side‐chains, such as serine, alanine, cysteine and valine, hardly affected the catalytic parameters and rendered the bacterial host resistant to the drug. Larger amino acid side‐chains, such as that of arginine, histidine, lysine and glutamine, completely inactivated the activity of the enzyme.</abstract><cop>Oxford BSL</cop><pub>Blackwell Science Ltd</pub><pmid>10027962</pmid><doi>10.1046/j.1365-2958.1999.01182.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 1999-01, Vol.31 (2), p.443-450
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_17205535
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Alleles
Amino Acid Substitution
Anti-Bacterial Agents - metabolism
Anti-Bacterial Agents - pharmacology
Boron Compounds - pharmacology
Catalysis
Drug Resistance, Microbial
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)
Enzyme Inhibitors - metabolism
Enzyme Inhibitors - pharmacology
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - enzymology
Escherichia coli - genetics
Mutagenesis, Site-Directed
Mycobacterium tuberculosis
Oxidoreductases - antagonists & inhibitors
Oxidoreductases - genetics
Oxidoreductases - metabolism
Sequence Analysis, DNA
title Molecular genetic analysis of enoyl‐acyl carrier protein reductase inhibition by diazaborine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20genetic%20analysis%20of%20enoyl%E2%80%90acyl%20carrier%20protein%20reductase%20inhibition%20by%20diazaborine&rft.jtitle=Molecular%20microbiology&rft.au=De%20Boer,%20Gert%E2%80%90Jan&rft.date=1999-01&rft.volume=31&rft.issue=2&rft.spage=443&rft.epage=450&rft.pages=443-450&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.1999.01182.x&rft_dat=%3Cproquest_cross%3E17205535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196518241&rft_id=info:pmid/10027962&rfr_iscdi=true