Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents

As pyrazole and isoxazole based derivatives are well-known for displaying a considerable biological profile, an attempt has been made to unravel their cytotoxic potential. In this context, a number of pyrazole/isoxazole linked arylcinnamide conjugates (15a-o and 21a-n) have been synthesized by emplo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2015-10, Vol.13 (40), p.10162-10178
Hauptverfasser: Kamal, Ahmed, Shaik, Anver Basha, Rao, Bala Bhaskara, Khan, Irfan, Bharath Kumar, G, Jain, Nishant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As pyrazole and isoxazole based derivatives are well-known for displaying a considerable biological profile, an attempt has been made to unravel their cytotoxic potential. In this context, a number of pyrazole/isoxazole linked arylcinnamide conjugates (15a-o and 21a-n) have been synthesized by employing a straight forward route. The basic structure comprised three ring scaffolds (A, B and C): methoxyphenyl rings as A and C rings and a five membered heterocyclic ring (pyrazole or isoxazole) as the B-ring. To achieve clear understanding, these derivatives are categorized as pyrazole-phenylcinnamides (PP) and isoxazole-phenylcinnamides (IP). These compounds have been evaluated for their ability to inhibit the growth of various human cancer cell lines such as HeLa, DU-145, A549 and MDA-MB231 and most of them exhibit considerable cytotoxic effects. Some of them like 15a, 15b, 15e, 15i and 15l exhibit promising cytotoxicity in HeLa cells (IC50 = 0.4, 1.8, 1.2, 2.7 and 1.7 μM). Amongst them 15a, 15b and 15e were taken up for detailed biological studies, they were found to arrest the cells in the G2/M phase of the cell cycle. Moreover, they were investigated for their effect on the microtubular cytoskeletal system by using a tubulin polymerization assay, immunofluroscence and molecular docking studies; interestingly they demonstrate a significant inhibition of tubulin polymerization.
ISSN:1477-0520
1477-0539
DOI:10.1039/c5ob01257k