A monovalent streptavidin with a single femtomolar biotin binding site

Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10 4 -fold because part of the binding site comes from a neighbori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2006-04, Vol.3 (4), p.267-273
Hauptverfasser: Ting, Alice Y, Howarth, Mark, Chinnapen, Daniel J-F, Gerrow, Kimberly, Dorrestein, Pieter C, Grandy, Melanie R, Kelleher, Neil L, El-Husseini, Alaa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue 4
container_start_page 267
container_title Nature methods
container_volume 3
creator Ting, Alice Y
Howarth, Mark
Chinnapen, Daniel J-F
Gerrow, Kimberly
Dorrestein, Pieter C
Grandy, Melanie R
Kelleher, Neil L
El-Husseini, Alaa
description Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10 4 -fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.
doi_str_mv 10.1038/nmeth861
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17192410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183471953</galeid><sourcerecordid>A183471953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</originalsourceid><addsrcrecordid>eNp1kVtLAzEQhYMoXqrgL5BFQfShmmyS7faxiDco-KLPIZtMamQ3qUm24r83pVVRlDwkzPnmMJOD0CHBFwTT-tJ1kJ7rimygXcJZPRwRzDc_33hMdtBejC8YU8pKvo12SMWzRMkuupkUnXd-IVtwqYgpwDzJhdXWFW82PReyiNbNWigMdMl3vpWhaKxPWW-sy9gsAwn20ZaRbYSD9T1ATzfXj1d3w-nD7f3VZDpUrKJpWI-xooaXGtSo0kqDGRHQZaN5zSpDQSsCYEADYCUpbaox16wBJrmhssaGDtDpynce_GsPMYnORgVtKx34PgoyIuOS5T8ZoONf4Ivvg8uzibKkJeN1VWXoZAXN8vrCOuNTkGrpKCakpiybcZqpiz-ofDR0VnkHxub6j4azVYMKPsYARsyD7WR4FwSLZV7iM6-MHq3H7JsO9De4DigD5ysgZsnNIHzv8b-Zk6kP8GX2BXwAW0CqGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223245866</pqid></control><display><type>article</type><title>A monovalent streptavidin with a single femtomolar biotin binding site</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ting, Alice Y ; Howarth, Mark ; Chinnapen, Daniel J-F ; Gerrow, Kimberly ; Dorrestein, Pieter C ; Grandy, Melanie R ; Kelleher, Neil L ; El-Husseini, Alaa</creator><creatorcontrib>Ting, Alice Y ; Howarth, Mark ; Chinnapen, Daniel J-F ; Gerrow, Kimberly ; Dorrestein, Pieter C ; Grandy, Melanie R ; Kelleher, Neil L ; El-Husseini, Alaa</creatorcontrib><description>Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10 4 -fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth861</identifier><identifier>PMID: 16554831</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Binding Sites ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotin ; Biotin - chemistry ; Biotin - metabolism ; Biotinylation ; Cell Adhesion Molecules, Neuronal ; Cross-Linking Reagents - pharmacology ; Hippocampus - cytology ; Hippocampus - ultrastructure ; Hybridization ; Kinetics ; Life Sciences ; Membrane Proteins - metabolism ; Molecular probes ; Mutagenesis, Site-Directed ; Mutation ; Nanotechnology ; Nanotechnology - methods ; Nerve Tissue Proteins - metabolism ; Neurons - metabolism ; Nickel ; Physiological aspects ; Protein Denaturation ; Protein Engineering - methods ; Protein Folding ; Proteins ; Proteomics ; Streptavidin - chemistry ; Streptavidin - metabolism ; Synapses - metabolism ; Temperature ; Vitamin B</subject><ispartof>Nature methods, 2006-04, Vol.3 (4), p.267-273</ispartof><rights>Springer Nature America, Inc. 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</citedby><cites>FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth861$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth861$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16554831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Alice Y</creatorcontrib><creatorcontrib>Howarth, Mark</creatorcontrib><creatorcontrib>Chinnapen, Daniel J-F</creatorcontrib><creatorcontrib>Gerrow, Kimberly</creatorcontrib><creatorcontrib>Dorrestein, Pieter C</creatorcontrib><creatorcontrib>Grandy, Melanie R</creatorcontrib><creatorcontrib>Kelleher, Neil L</creatorcontrib><creatorcontrib>El-Husseini, Alaa</creatorcontrib><title>A monovalent streptavidin with a single femtomolar biotin binding site</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10 4 -fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotin</subject><subject>Biotin - chemistry</subject><subject>Biotin - metabolism</subject><subject>Biotinylation</subject><subject>Cell Adhesion Molecules, Neuronal</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - ultrastructure</subject><subject>Hybridization</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular probes</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Nickel</subject><subject>Physiological aspects</subject><subject>Protein Denaturation</subject><subject>Protein Engineering - methods</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Streptavidin - chemistry</subject><subject>Streptavidin - metabolism</subject><subject>Synapses - metabolism</subject><subject>Temperature</subject><subject>Vitamin B</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kVtLAzEQhYMoXqrgL5BFQfShmmyS7faxiDco-KLPIZtMamQ3qUm24r83pVVRlDwkzPnmMJOD0CHBFwTT-tJ1kJ7rimygXcJZPRwRzDc_33hMdtBejC8YU8pKvo12SMWzRMkuupkUnXd-IVtwqYgpwDzJhdXWFW82PReyiNbNWigMdMl3vpWhaKxPWW-sy9gsAwn20ZaRbYSD9T1ATzfXj1d3w-nD7f3VZDpUrKJpWI-xooaXGtSo0kqDGRHQZaN5zSpDQSsCYEADYCUpbaox16wBJrmhssaGDtDpynce_GsPMYnORgVtKx34PgoyIuOS5T8ZoONf4Ivvg8uzibKkJeN1VWXoZAXN8vrCOuNTkGrpKCakpiybcZqpiz-ofDR0VnkHxub6j4azVYMKPsYARsyD7WR4FwSLZV7iM6-MHq3H7JsO9De4DigD5ysgZsnNIHzv8b-Zk6kP8GX2BXwAW0CqGw</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Ting, Alice Y</creator><creator>Howarth, Mark</creator><creator>Chinnapen, Daniel J-F</creator><creator>Gerrow, Kimberly</creator><creator>Dorrestein, Pieter C</creator><creator>Grandy, Melanie R</creator><creator>Kelleher, Neil L</creator><creator>El-Husseini, Alaa</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20060401</creationdate><title>A monovalent streptavidin with a single femtomolar biotin binding site</title><author>Ting, Alice Y ; Howarth, Mark ; Chinnapen, Daniel J-F ; Gerrow, Kimberly ; Dorrestein, Pieter C ; Grandy, Melanie R ; Kelleher, Neil L ; El-Husseini, Alaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotin</topic><topic>Biotin - chemistry</topic><topic>Biotin - metabolism</topic><topic>Biotinylation</topic><topic>Cell Adhesion Molecules, Neuronal</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - ultrastructure</topic><topic>Hybridization</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular probes</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Nickel</topic><topic>Physiological aspects</topic><topic>Protein Denaturation</topic><topic>Protein Engineering - methods</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Streptavidin - chemistry</topic><topic>Streptavidin - metabolism</topic><topic>Synapses - metabolism</topic><topic>Temperature</topic><topic>Vitamin B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Alice Y</creatorcontrib><creatorcontrib>Howarth, Mark</creatorcontrib><creatorcontrib>Chinnapen, Daniel J-F</creatorcontrib><creatorcontrib>Gerrow, Kimberly</creatorcontrib><creatorcontrib>Dorrestein, Pieter C</creatorcontrib><creatorcontrib>Grandy, Melanie R</creatorcontrib><creatorcontrib>Kelleher, Neil L</creatorcontrib><creatorcontrib>El-Husseini, Alaa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Alice Y</au><au>Howarth, Mark</au><au>Chinnapen, Daniel J-F</au><au>Gerrow, Kimberly</au><au>Dorrestein, Pieter C</au><au>Grandy, Melanie R</au><au>Kelleher, Neil L</au><au>El-Husseini, Alaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A monovalent streptavidin with a single femtomolar biotin binding site</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>3</volume><issue>4</issue><spage>267</spage><epage>273</epage><pages>267-273</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10 4 -fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16554831</pmid><doi>10.1038/nmeth861</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2006-04, Vol.3 (4), p.267-273
issn 1548-7091
1548-7105
language eng
recordid cdi_proquest_miscellaneous_17192410
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Animals
Binding Sites
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biotin
Biotin - chemistry
Biotin - metabolism
Biotinylation
Cell Adhesion Molecules, Neuronal
Cross-Linking Reagents - pharmacology
Hippocampus - cytology
Hippocampus - ultrastructure
Hybridization
Kinetics
Life Sciences
Membrane Proteins - metabolism
Molecular probes
Mutagenesis, Site-Directed
Mutation
Nanotechnology
Nanotechnology - methods
Nerve Tissue Proteins - metabolism
Neurons - metabolism
Nickel
Physiological aspects
Protein Denaturation
Protein Engineering - methods
Protein Folding
Proteins
Proteomics
Streptavidin - chemistry
Streptavidin - metabolism
Synapses - metabolism
Temperature
Vitamin B
title A monovalent streptavidin with a single femtomolar biotin binding site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20monovalent%20streptavidin%20with%20a%20single%20femtomolar%20biotin%20binding%20site&rft.jtitle=Nature%20methods&rft.au=Ting,%20Alice%20Y&rft.date=2006-04-01&rft.volume=3&rft.issue=4&rft.spage=267&rft.epage=273&rft.pages=267-273&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth861&rft_dat=%3Cgale_proqu%3EA183471953%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223245866&rft_id=info:pmid/16554831&rft_galeid=A183471953&rfr_iscdi=true