A monovalent streptavidin with a single femtomolar biotin binding site
Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10 4 -fold because part of the binding site comes from a neighbori...
Gespeichert in:
Veröffentlicht in: | Nature methods 2006-04, Vol.3 (4), p.267-273 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | 4 |
container_start_page | 267 |
container_title | Nature methods |
container_volume | 3 |
creator | Ting, Alice Y Howarth, Mark Chinnapen, Daniel J-F Gerrow, Kimberly Dorrestein, Pieter C Grandy, Melanie R Kelleher, Neil L El-Husseini, Alaa |
description | Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10
4
-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology. |
doi_str_mv | 10.1038/nmeth861 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17192410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183471953</galeid><sourcerecordid>A183471953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</originalsourceid><addsrcrecordid>eNp1kVtLAzEQhYMoXqrgL5BFQfShmmyS7faxiDco-KLPIZtMamQ3qUm24r83pVVRlDwkzPnmMJOD0CHBFwTT-tJ1kJ7rimygXcJZPRwRzDc_33hMdtBejC8YU8pKvo12SMWzRMkuupkUnXd-IVtwqYgpwDzJhdXWFW82PReyiNbNWigMdMl3vpWhaKxPWW-sy9gsAwn20ZaRbYSD9T1ATzfXj1d3w-nD7f3VZDpUrKJpWI-xooaXGtSo0kqDGRHQZaN5zSpDQSsCYEADYCUpbaox16wBJrmhssaGDtDpynce_GsPMYnORgVtKx34PgoyIuOS5T8ZoONf4Ivvg8uzibKkJeN1VWXoZAXN8vrCOuNTkGrpKCakpiybcZqpiz-ofDR0VnkHxub6j4azVYMKPsYARsyD7WR4FwSLZV7iM6-MHq3H7JsO9De4DigD5ysgZsnNIHzv8b-Zk6kP8GX2BXwAW0CqGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223245866</pqid></control><display><type>article</type><title>A monovalent streptavidin with a single femtomolar biotin binding site</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ting, Alice Y ; Howarth, Mark ; Chinnapen, Daniel J-F ; Gerrow, Kimberly ; Dorrestein, Pieter C ; Grandy, Melanie R ; Kelleher, Neil L ; El-Husseini, Alaa</creator><creatorcontrib>Ting, Alice Y ; Howarth, Mark ; Chinnapen, Daniel J-F ; Gerrow, Kimberly ; Dorrestein, Pieter C ; Grandy, Melanie R ; Kelleher, Neil L ; El-Husseini, Alaa</creatorcontrib><description>Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10
4
-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/nmeth861</identifier><identifier>PMID: 16554831</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Binding Sites ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotin ; Biotin - chemistry ; Biotin - metabolism ; Biotinylation ; Cell Adhesion Molecules, Neuronal ; Cross-Linking Reagents - pharmacology ; Hippocampus - cytology ; Hippocampus - ultrastructure ; Hybridization ; Kinetics ; Life Sciences ; Membrane Proteins - metabolism ; Molecular probes ; Mutagenesis, Site-Directed ; Mutation ; Nanotechnology ; Nanotechnology - methods ; Nerve Tissue Proteins - metabolism ; Neurons - metabolism ; Nickel ; Physiological aspects ; Protein Denaturation ; Protein Engineering - methods ; Protein Folding ; Proteins ; Proteomics ; Streptavidin - chemistry ; Streptavidin - metabolism ; Synapses - metabolism ; Temperature ; Vitamin B</subject><ispartof>Nature methods, 2006-04, Vol.3 (4), p.267-273</ispartof><rights>Springer Nature America, Inc. 2006</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</citedby><cites>FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmeth861$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmeth861$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2725,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16554831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Alice Y</creatorcontrib><creatorcontrib>Howarth, Mark</creatorcontrib><creatorcontrib>Chinnapen, Daniel J-F</creatorcontrib><creatorcontrib>Gerrow, Kimberly</creatorcontrib><creatorcontrib>Dorrestein, Pieter C</creatorcontrib><creatorcontrib>Grandy, Melanie R</creatorcontrib><creatorcontrib>Kelleher, Neil L</creatorcontrib><creatorcontrib>El-Husseini, Alaa</creatorcontrib><title>A monovalent streptavidin with a single femtomolar biotin binding site</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10
4
-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotin</subject><subject>Biotin - chemistry</subject><subject>Biotin - metabolism</subject><subject>Biotinylation</subject><subject>Cell Adhesion Molecules, Neuronal</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - ultrastructure</subject><subject>Hybridization</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular probes</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons - metabolism</subject><subject>Nickel</subject><subject>Physiological aspects</subject><subject>Protein Denaturation</subject><subject>Protein Engineering - methods</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Streptavidin - chemistry</subject><subject>Streptavidin - metabolism</subject><subject>Synapses - metabolism</subject><subject>Temperature</subject><subject>Vitamin B</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kVtLAzEQhYMoXqrgL5BFQfShmmyS7faxiDco-KLPIZtMamQ3qUm24r83pVVRlDwkzPnmMJOD0CHBFwTT-tJ1kJ7rimygXcJZPRwRzDc_33hMdtBejC8YU8pKvo12SMWzRMkuupkUnXd-IVtwqYgpwDzJhdXWFW82PReyiNbNWigMdMl3vpWhaKxPWW-sy9gsAwn20ZaRbYSD9T1ATzfXj1d3w-nD7f3VZDpUrKJpWI-xooaXGtSo0kqDGRHQZaN5zSpDQSsCYEADYCUpbaox16wBJrmhssaGDtDpynce_GsPMYnORgVtKx34PgoyIuOS5T8ZoONf4Ivvg8uzibKkJeN1VWXoZAXN8vrCOuNTkGrpKCakpiybcZqpiz-ofDR0VnkHxub6j4azVYMKPsYARsyD7WR4FwSLZV7iM6-MHq3H7JsO9De4DigD5ysgZsnNIHzv8b-Zk6kP8GX2BXwAW0CqGw</recordid><startdate>20060401</startdate><enddate>20060401</enddate><creator>Ting, Alice Y</creator><creator>Howarth, Mark</creator><creator>Chinnapen, Daniel J-F</creator><creator>Gerrow, Kimberly</creator><creator>Dorrestein, Pieter C</creator><creator>Grandy, Melanie R</creator><creator>Kelleher, Neil L</creator><creator>El-Husseini, Alaa</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20060401</creationdate><title>A monovalent streptavidin with a single femtomolar biotin binding site</title><author>Ting, Alice Y ; Howarth, Mark ; Chinnapen, Daniel J-F ; Gerrow, Kimberly ; Dorrestein, Pieter C ; Grandy, Melanie R ; Kelleher, Neil L ; El-Husseini, Alaa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-890c3f52dec76dcdef71ed2bd5846f3edc1eefedee0ca33b695d4be4a5f3a80f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotin</topic><topic>Biotin - chemistry</topic><topic>Biotin - metabolism</topic><topic>Biotinylation</topic><topic>Cell Adhesion Molecules, Neuronal</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - ultrastructure</topic><topic>Hybridization</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular probes</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons - metabolism</topic><topic>Nickel</topic><topic>Physiological aspects</topic><topic>Protein Denaturation</topic><topic>Protein Engineering - methods</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Streptavidin - chemistry</topic><topic>Streptavidin - metabolism</topic><topic>Synapses - metabolism</topic><topic>Temperature</topic><topic>Vitamin B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Alice Y</creatorcontrib><creatorcontrib>Howarth, Mark</creatorcontrib><creatorcontrib>Chinnapen, Daniel J-F</creatorcontrib><creatorcontrib>Gerrow, Kimberly</creatorcontrib><creatorcontrib>Dorrestein, Pieter C</creatorcontrib><creatorcontrib>Grandy, Melanie R</creatorcontrib><creatorcontrib>Kelleher, Neil L</creatorcontrib><creatorcontrib>El-Husseini, Alaa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Alice Y</au><au>Howarth, Mark</au><au>Chinnapen, Daniel J-F</au><au>Gerrow, Kimberly</au><au>Dorrestein, Pieter C</au><au>Grandy, Melanie R</au><au>Kelleher, Neil L</au><au>El-Husseini, Alaa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A monovalent streptavidin with a single femtomolar biotin binding site</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2006-04-01</date><risdate>2006</risdate><volume>3</volume><issue>4</issue><spage>267</spage><epage>273</epage><pages>267-273</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Streptavidin and avidin are used ubiquitously because of the remarkable affinity of their biotin binding, but they are tetramers, which disrupts many of their applications. Making either protein monomeric reduces affinity by at least 10
4
-fold because part of the binding site comes from a neighboring subunit. Here we engineered a streptavidin tetramer with only one functional biotin binding subunit that retained the affinity, off rate and thermostability of wild-type streptavidin. In denaturant, we mixed a streptavidin variant containing three mutations that block biotin binding with wild-type streptavidin in a 3:1 ratio. Then we generated monovalent streptavidin by refolding and nickel-affinity purification. Similarly, we purified defined tetramers with two or three biotin binding subunits. Labeling of site-specifically biotinylated neuroligin-1 with monovalent streptavidin allowed stable neuroligin-1 tracking without cross-linking, whereas wild-type streptavidin aggregated neuroligin-1 and disrupted presynaptic contacts. Monovalent streptavidin should find general application in biomolecule labeling, single-particle tracking and nanotechnology.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>16554831</pmid><doi>10.1038/nmeth861</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2006-04, Vol.3 (4), p.267-273 |
issn | 1548-7091 1548-7105 |
language | eng |
recordid | cdi_proquest_miscellaneous_17192410 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | Animals Binding Sites Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biotin Biotin - chemistry Biotin - metabolism Biotinylation Cell Adhesion Molecules, Neuronal Cross-Linking Reagents - pharmacology Hippocampus - cytology Hippocampus - ultrastructure Hybridization Kinetics Life Sciences Membrane Proteins - metabolism Molecular probes Mutagenesis, Site-Directed Mutation Nanotechnology Nanotechnology - methods Nerve Tissue Proteins - metabolism Neurons - metabolism Nickel Physiological aspects Protein Denaturation Protein Engineering - methods Protein Folding Proteins Proteomics Streptavidin - chemistry Streptavidin - metabolism Synapses - metabolism Temperature Vitamin B |
title | A monovalent streptavidin with a single femtomolar biotin binding site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20monovalent%20streptavidin%20with%20a%20single%20femtomolar%20biotin%20binding%20site&rft.jtitle=Nature%20methods&rft.au=Ting,%20Alice%20Y&rft.date=2006-04-01&rft.volume=3&rft.issue=4&rft.spage=267&rft.epage=273&rft.pages=267-273&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/nmeth861&rft_dat=%3Cgale_proqu%3EA183471953%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223245866&rft_id=info:pmid/16554831&rft_galeid=A183471953&rfr_iscdi=true |