Normal-dispersion microcombs enabled by controllable mode interactions

We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2015-07, Vol.9 (4), p.L23-L28
Hauptverfasser: Xue, Xiaoxiao, Xuan, Yi, Wang, Pei-Hsun, Liu, Yang, Leaird, Dan E., Qi, Minghao, Weiner, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L28
container_issue 4
container_start_page L23
container_title Laser & photonics reviews
container_volume 9
creator Xue, Xiaoxiao
Xuan, Yi
Wang, Pei-Hsun
Liu, Yang
Leaird, Dan E.
Qi, Minghao
Weiner, Andrew M.
description We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.
doi_str_mv 10.1002/lpor.201500107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718975651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718975651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOKdXzwUvXjrz0XwdZegUxiYy0VtI0xQy26YmHbr_3pbKEC_mkhCe5-X3_gC4RHCGIMQ3VevDDENEIUSQH4EJEoykQkh5fHgLeArOYtxCSPvDJuB-5UOtq7RwsbUhOt8ktTPBG1_nMbGNzitbJPk-Mb7pgq-q4SOpfWET13Q2aNP1TjwHJ6Wuor34uafg5f5uM39Il-vF4_x2mZpMZjyluaQw14KzTOTYiLIgGLEMU1bIQmeCaGmwxJDnOTcM4j6ikay0pKSZIQyRKbge57bBf-xs7FTtorF9rMb6XVSIIyE5ZXRAr_6gW78LTZ9OISYFFpLBgZqNVL9zjMGWqg2u1mGvEFRDrWqoVR1q7QU5Cp-usvt_aLV8Wj__dtPRdbGzXwdXh3fFOOFUva4WSsrN2wYSpBbkG-VRioI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698289601</pqid></control><display><type>article</type><title>Normal-dispersion microcombs enabled by controllable mode interactions</title><source>Wiley Online Library All Journals</source><creator>Xue, Xiaoxiao ; Xuan, Yi ; Wang, Pei-Hsun ; Liu, Yang ; Leaird, Dan E. ; Qi, Minghao ; Weiner, Andrew M.</creator><creatorcontrib>Xue, Xiaoxiao ; Xuan, Yi ; Wang, Pei-Hsun ; Liu, Yang ; Leaird, Dan E. ; Qi, Minghao ; Weiner, Andrew M.</creatorcontrib><description>We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.201500107</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Dispersions ; group velocity dispersion ; Joining ; Kerr effect ; Lasers ; Microresonator ; mode coupling ; Mode locking ; modulational instability ; optical frequency comb ; Repetition ; Silicon nitride ; Strategy ; Wavelengths</subject><ispartof>Laser &amp; photonics reviews, 2015-07, Vol.9 (4), p.L23-L28</ispartof><rights>2015 by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</citedby><cites>FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.201500107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.201500107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Xue, Xiaoxiao</creatorcontrib><creatorcontrib>Xuan, Yi</creatorcontrib><creatorcontrib>Wang, Pei-Hsun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Leaird, Dan E.</creatorcontrib><creatorcontrib>Qi, Minghao</creatorcontrib><creatorcontrib>Weiner, Andrew M.</creatorcontrib><title>Normal-dispersion microcombs enabled by controllable mode interactions</title><title>Laser &amp; photonics reviews</title><addtitle>Laser &amp; Photonics Reviews</addtitle><description>We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.</description><subject>Dispersions</subject><subject>group velocity dispersion</subject><subject>Joining</subject><subject>Kerr effect</subject><subject>Lasers</subject><subject>Microresonator</subject><subject>mode coupling</subject><subject>Mode locking</subject><subject>modulational instability</subject><subject>optical frequency comb</subject><subject>Repetition</subject><subject>Silicon nitride</subject><subject>Strategy</subject><subject>Wavelengths</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOKdXzwUvXjrz0XwdZegUxiYy0VtI0xQy26YmHbr_3pbKEC_mkhCe5-X3_gC4RHCGIMQ3VevDDENEIUSQH4EJEoykQkh5fHgLeArOYtxCSPvDJuB-5UOtq7RwsbUhOt8ktTPBG1_nMbGNzitbJPk-Mb7pgq-q4SOpfWET13Q2aNP1TjwHJ6Wuor34uafg5f5uM39Il-vF4_x2mZpMZjyluaQw14KzTOTYiLIgGLEMU1bIQmeCaGmwxJDnOTcM4j6ikay0pKSZIQyRKbge57bBf-xs7FTtorF9rMb6XVSIIyE5ZXRAr_6gW78LTZ9OISYFFpLBgZqNVL9zjMGWqg2u1mGvEFRDrWqoVR1q7QU5Cp-usvt_aLV8Wj__dtPRdbGzXwdXh3fFOOFUva4WSsrN2wYSpBbkG-VRioI</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Xue, Xiaoxiao</creator><creator>Xuan, Yi</creator><creator>Wang, Pei-Hsun</creator><creator>Liu, Yang</creator><creator>Leaird, Dan E.</creator><creator>Qi, Minghao</creator><creator>Weiner, Andrew M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201507</creationdate><title>Normal-dispersion microcombs enabled by controllable mode interactions</title><author>Xue, Xiaoxiao ; Xuan, Yi ; Wang, Pei-Hsun ; Liu, Yang ; Leaird, Dan E. ; Qi, Minghao ; Weiner, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dispersions</topic><topic>group velocity dispersion</topic><topic>Joining</topic><topic>Kerr effect</topic><topic>Lasers</topic><topic>Microresonator</topic><topic>mode coupling</topic><topic>Mode locking</topic><topic>modulational instability</topic><topic>optical frequency comb</topic><topic>Repetition</topic><topic>Silicon nitride</topic><topic>Strategy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Xiaoxiao</creatorcontrib><creatorcontrib>Xuan, Yi</creatorcontrib><creatorcontrib>Wang, Pei-Hsun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Leaird, Dan E.</creatorcontrib><creatorcontrib>Qi, Minghao</creatorcontrib><creatorcontrib>Weiner, Andrew M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Xiaoxiao</au><au>Xuan, Yi</au><au>Wang, Pei-Hsun</au><au>Liu, Yang</au><au>Leaird, Dan E.</au><au>Qi, Minghao</au><au>Weiner, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal-dispersion microcombs enabled by controllable mode interactions</atitle><jtitle>Laser &amp; photonics reviews</jtitle><addtitle>Laser &amp; Photonics Reviews</addtitle><date>2015-07</date><risdate>2015</risdate><volume>9</volume><issue>4</issue><spage>L23</spage><epage>L28</epage><pages>L23-L28</pages><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/lpor.201500107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2015-07, Vol.9 (4), p.L23-L28
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_miscellaneous_1718975651
source Wiley Online Library All Journals
subjects Dispersions
group velocity dispersion
Joining
Kerr effect
Lasers
Microresonator
mode coupling
Mode locking
modulational instability
optical frequency comb
Repetition
Silicon nitride
Strategy
Wavelengths
title Normal-dispersion microcombs enabled by controllable mode interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal-dispersion%20microcombs%20enabled%20by%20controllable%20mode%20interactions&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Xue,%20Xiaoxiao&rft.date=2015-07&rft.volume=9&rft.issue=4&rft.spage=L23&rft.epage=L28&rft.pages=L23-L28&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.201500107&rft_dat=%3Cproquest_cross%3E1718975651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698289601&rft_id=info:pmid/&rfr_iscdi=true