Normal-dispersion microcombs enabled by controllable mode interactions
We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieve...
Gespeichert in:
Veröffentlicht in: | Laser & photonics reviews 2015-07, Vol.9 (4), p.L23-L28 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L28 |
---|---|
container_issue | 4 |
container_start_page | L23 |
container_title | Laser & photonics reviews |
container_volume | 9 |
creator | Xue, Xiaoxiao Xuan, Yi Wang, Pei-Hsun Liu, Yang Leaird, Dan E. Qi, Minghao Weiner, Andrew M. |
description | We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.
Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate. |
doi_str_mv | 10.1002/lpor.201500107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718975651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718975651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4MoOKdXzwUvXjrz0XwdZegUxiYy0VtI0xQy26YmHbr_3pbKEC_mkhCe5-X3_gC4RHCGIMQ3VevDDENEIUSQH4EJEoykQkh5fHgLeArOYtxCSPvDJuB-5UOtq7RwsbUhOt8ktTPBG1_nMbGNzitbJPk-Mb7pgq-q4SOpfWET13Q2aNP1TjwHJ6Wuor34uafg5f5uM39Il-vF4_x2mZpMZjyluaQw14KzTOTYiLIgGLEMU1bIQmeCaGmwxJDnOTcM4j6ikay0pKSZIQyRKbge57bBf-xs7FTtorF9rMb6XVSIIyE5ZXRAr_6gW78LTZ9OISYFFpLBgZqNVL9zjMGWqg2u1mGvEFRDrWqoVR1q7QU5Cp-usvt_aLV8Wj__dtPRdbGzXwdXh3fFOOFUva4WSsrN2wYSpBbkG-VRioI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1698289601</pqid></control><display><type>article</type><title>Normal-dispersion microcombs enabled by controllable mode interactions</title><source>Wiley Online Library All Journals</source><creator>Xue, Xiaoxiao ; Xuan, Yi ; Wang, Pei-Hsun ; Liu, Yang ; Leaird, Dan E. ; Qi, Minghao ; Weiner, Andrew M.</creator><creatorcontrib>Xue, Xiaoxiao ; Xuan, Yi ; Wang, Pei-Hsun ; Liu, Yang ; Leaird, Dan E. ; Qi, Minghao ; Weiner, Andrew M.</creatorcontrib><description>We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.
Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.201500107</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Dispersions ; group velocity dispersion ; Joining ; Kerr effect ; Lasers ; Microresonator ; mode coupling ; Mode locking ; modulational instability ; optical frequency comb ; Repetition ; Silicon nitride ; Strategy ; Wavelengths</subject><ispartof>Laser & photonics reviews, 2015-07, Vol.9 (4), p.L23-L28</ispartof><rights>2015 by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</citedby><cites>FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.201500107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.201500107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Xue, Xiaoxiao</creatorcontrib><creatorcontrib>Xuan, Yi</creatorcontrib><creatorcontrib>Wang, Pei-Hsun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Leaird, Dan E.</creatorcontrib><creatorcontrib>Qi, Minghao</creatorcontrib><creatorcontrib>Weiner, Andrew M.</creatorcontrib><title>Normal-dispersion microcombs enabled by controllable mode interactions</title><title>Laser & photonics reviews</title><addtitle>Laser & Photonics Reviews</addtitle><description>We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.
Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.</description><subject>Dispersions</subject><subject>group velocity dispersion</subject><subject>Joining</subject><subject>Kerr effect</subject><subject>Lasers</subject><subject>Microresonator</subject><subject>mode coupling</subject><subject>Mode locking</subject><subject>modulational instability</subject><subject>optical frequency comb</subject><subject>Repetition</subject><subject>Silicon nitride</subject><subject>Strategy</subject><subject>Wavelengths</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4MoOKdXzwUvXjrz0XwdZegUxiYy0VtI0xQy26YmHbr_3pbKEC_mkhCe5-X3_gC4RHCGIMQ3VevDDENEIUSQH4EJEoykQkh5fHgLeArOYtxCSPvDJuB-5UOtq7RwsbUhOt8ktTPBG1_nMbGNzitbJPk-Mb7pgq-q4SOpfWET13Q2aNP1TjwHJ6Wuor34uafg5f5uM39Il-vF4_x2mZpMZjyluaQw14KzTOTYiLIgGLEMU1bIQmeCaGmwxJDnOTcM4j6ikay0pKSZIQyRKbge57bBf-xs7FTtorF9rMb6XVSIIyE5ZXRAr_6gW78LTZ9OISYFFpLBgZqNVL9zjMGWqg2u1mGvEFRDrWqoVR1q7QU5Cp-usvt_aLV8Wj__dtPRdbGzXwdXh3fFOOFUva4WSsrN2wYSpBbkG-VRioI</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Xue, Xiaoxiao</creator><creator>Xuan, Yi</creator><creator>Wang, Pei-Hsun</creator><creator>Liu, Yang</creator><creator>Leaird, Dan E.</creator><creator>Qi, Minghao</creator><creator>Weiner, Andrew M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201507</creationdate><title>Normal-dispersion microcombs enabled by controllable mode interactions</title><author>Xue, Xiaoxiao ; Xuan, Yi ; Wang, Pei-Hsun ; Liu, Yang ; Leaird, Dan E. ; Qi, Minghao ; Weiner, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4947-5b950ba87648b2c8fd32164256d9da483a9c29207bb7c602556c96fe3f54c3613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Dispersions</topic><topic>group velocity dispersion</topic><topic>Joining</topic><topic>Kerr effect</topic><topic>Lasers</topic><topic>Microresonator</topic><topic>mode coupling</topic><topic>Mode locking</topic><topic>modulational instability</topic><topic>optical frequency comb</topic><topic>Repetition</topic><topic>Silicon nitride</topic><topic>Strategy</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Xiaoxiao</creatorcontrib><creatorcontrib>Xuan, Yi</creatorcontrib><creatorcontrib>Wang, Pei-Hsun</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Leaird, Dan E.</creatorcontrib><creatorcontrib>Qi, Minghao</creatorcontrib><creatorcontrib>Weiner, Andrew M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Xiaoxiao</au><au>Xuan, Yi</au><au>Wang, Pei-Hsun</au><au>Liu, Yang</au><au>Leaird, Dan E.</au><au>Qi, Minghao</au><au>Weiner, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal-dispersion microcombs enabled by controllable mode interactions</atitle><jtitle>Laser & photonics reviews</jtitle><addtitle>Laser & Photonics Reviews</addtitle><date>2015-07</date><risdate>2015</risdate><volume>9</volume><issue>4</issue><spage>L23</spage><epage>L28</epage><pages>L23-L28</pages><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.
Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings constructed from single‐mode waveguides. Mode interactions are controlled via an on‐chip microheater for reliable microcomb initiation. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcomb generation and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where material dispersion is likely to dominate.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/lpor.201500107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2015-07, Vol.9 (4), p.L23-L28 |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718975651 |
source | Wiley Online Library All Journals |
subjects | Dispersions group velocity dispersion Joining Kerr effect Lasers Microresonator mode coupling Mode locking modulational instability optical frequency comb Repetition Silicon nitride Strategy Wavelengths |
title | Normal-dispersion microcombs enabled by controllable mode interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal-dispersion%20microcombs%20enabled%20by%20controllable%20mode%20interactions&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Xue,%20Xiaoxiao&rft.date=2015-07&rft.volume=9&rft.issue=4&rft.spage=L23&rft.epage=L28&rft.pages=L23-L28&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.201500107&rft_dat=%3Cproquest_cross%3E1718975651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1698289601&rft_id=info:pmid/&rfr_iscdi=true |