Sound statistical model checking for MDP using partial order and confluence reduction

Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on software tools for technology transfer 2015-08, Vol.17 (4), p.429-456
Hauptverfasser: Hartmanns, Arnd, Timmer, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 4
container_start_page 429
container_title International journal on software tools for technology transfer
container_volume 17
creator Hartmanns, Arnd
Timmer, Mark
description Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound results if the underlying model is a stochastic process. In verification, however, models are very often variations of nondeterministic transition systems. In classical exhaustive model checking, partial order reduction and confluence reduction allow the removal of spurious nondeterministic choices. In this paper, we show that both can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of SMC to a subclass of Markov decision processes. We prove their correctness in a uniform way and study their effectiveness and efficiency using an implementation in the modes simulator for the Modest modelling language. The examples we use highlight the different strengths and limitations of the two approaches. We find that runtime may be affected by unnecessary recomputations, and thus also investigate the feasibility of caching results to speed up simulation at the cost of increased memory usage.
doi_str_mv 10.1007/s10009-014-0349-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718975610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718975610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f5127b53479943844c6a91fc952e493be78d5ec452f696a89814f1f3af060ac33</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3EkmmSylPqGioF2HNJPUqdOkJjML_70pIyKCm_uA7xwOB6FTIBdAiLhMeRJZEGAFoUwWYg9NgFFalKIW-z-3kIfoKKU1ISC4kBO0eAmDb3Dqdd-mvjW6w5vQ2A6bN2veW7_CLkT8eP2Mh7T7tjr2bYZCbGzEOktN8K4brDcWR9sMpm-DP0YHTnfJnnzvKVrc3rzO7ov5093D7GpemJyxL1wFpVhWlAkpGa0ZM1xLcEZWpWWSLq2om8oaVpWOS65rWQNz4Kh2hBNtKJ2i89F3G8PHYFOvNm0ytuu0t2FICgTUUlQcSEbP_qDrMESf0yngkjFR8lJmCkbKxJBStE5tY7vR8VMBUbui1Vi0ykWrXdFKZE05alJm_crGX87_ir4A6rx_XQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694472629</pqid></control><display><type>article</type><title>Sound statistical model checking for MDP using partial order and confluence reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hartmanns, Arnd ; Timmer, Mark</creator><creatorcontrib>Hartmanns, Arnd ; Timmer, Mark</creatorcontrib><description>Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound results if the underlying model is a stochastic process. In verification, however, models are very often variations of nondeterministic transition systems. In classical exhaustive model checking, partial order reduction and confluence reduction allow the removal of spurious nondeterministic choices. In this paper, we show that both can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of SMC to a subclass of Markov decision processes. We prove their correctness in a uniform way and study their effectiveness and efficiency using an implementation in the modes simulator for the Modest modelling language. The examples we use highlight the different strengths and limitations of the two approaches. We find that runtime may be affected by unnecessary recomputations, and thus also investigate the feasibility of caching results to speed up simulation at the cost of increased memory usage.</description><identifier>ISSN: 1433-2779</identifier><identifier>EISSN: 1433-2787</identifier><identifier>DOI: 10.1007/s10009-014-0349-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer programs ; Computer Science ; Computer simulation ; Mathematical models ; Reduction ; Run time (computers) ; Simulation ; Smc ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Sound ; Statistical analysis ; Statistical methods ; Stochastic models ; Theory of Computation</subject><ispartof>International journal on software tools for technology transfer, 2015-08, Vol.17 (4), p.429-456</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f5127b53479943844c6a91fc952e493be78d5ec452f696a89814f1f3af060ac33</citedby><cites>FETCH-LOGICAL-c349t-f5127b53479943844c6a91fc952e493be78d5ec452f696a89814f1f3af060ac33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10009-014-0349-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10009-014-0349-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hartmanns, Arnd</creatorcontrib><creatorcontrib>Timmer, Mark</creatorcontrib><title>Sound statistical model checking for MDP using partial order and confluence reduction</title><title>International journal on software tools for technology transfer</title><addtitle>Int J Softw Tools Technol Transfer</addtitle><description>Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound results if the underlying model is a stochastic process. In verification, however, models are very often variations of nondeterministic transition systems. In classical exhaustive model checking, partial order reduction and confluence reduction allow the removal of spurious nondeterministic choices. In this paper, we show that both can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of SMC to a subclass of Markov decision processes. We prove their correctness in a uniform way and study their effectiveness and efficiency using an implementation in the modes simulator for the Modest modelling language. The examples we use highlight the different strengths and limitations of the two approaches. We find that runtime may be affected by unnecessary recomputations, and thus also investigate the feasibility of caching results to speed up simulation at the cost of increased memory usage.</description><subject>Computer programs</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Reduction</subject><subject>Run time (computers)</subject><subject>Simulation</subject><subject>Smc</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Sound</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stochastic models</subject><subject>Theory of Computation</subject><issn>1433-2779</issn><issn>1433-2787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3AjZvR3EkmmSylPqGioF2HNJPUqdOkJjML_70pIyKCm_uA7xwOB6FTIBdAiLhMeRJZEGAFoUwWYg9NgFFalKIW-z-3kIfoKKU1ISC4kBO0eAmDb3Dqdd-mvjW6w5vQ2A6bN2veW7_CLkT8eP2Mh7T7tjr2bYZCbGzEOktN8K4brDcWR9sMpm-DP0YHTnfJnnzvKVrc3rzO7ov5093D7GpemJyxL1wFpVhWlAkpGa0ZM1xLcEZWpWWSLq2om8oaVpWOS65rWQNz4Kh2hBNtKJ2i89F3G8PHYFOvNm0ytuu0t2FICgTUUlQcSEbP_qDrMESf0yngkjFR8lJmCkbKxJBStE5tY7vR8VMBUbui1Vi0ykWrXdFKZE05alJm_crGX87_ir4A6rx_XQ</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Hartmanns, Arnd</creator><creator>Timmer, Mark</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150801</creationdate><title>Sound statistical model checking for MDP using partial order and confluence reduction</title><author>Hartmanns, Arnd ; Timmer, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f5127b53479943844c6a91fc952e493be78d5ec452f696a89814f1f3af060ac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer programs</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Reduction</topic><topic>Run time (computers)</topic><topic>Simulation</topic><topic>Smc</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Sound</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stochastic models</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartmanns, Arnd</creatorcontrib><creatorcontrib>Timmer, Mark</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal on software tools for technology transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartmanns, Arnd</au><au>Timmer, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sound statistical model checking for MDP using partial order and confluence reduction</atitle><jtitle>International journal on software tools for technology transfer</jtitle><stitle>Int J Softw Tools Technol Transfer</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>17</volume><issue>4</issue><spage>429</spage><epage>456</epage><pages>429-456</pages><issn>1433-2779</issn><eissn>1433-2787</eissn><abstract>Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound results if the underlying model is a stochastic process. In verification, however, models are very often variations of nondeterministic transition systems. In classical exhaustive model checking, partial order reduction and confluence reduction allow the removal of spurious nondeterministic choices. In this paper, we show that both can be adapted to detect and discard such choices on-the-fly during simulation, thus extending the applicability of SMC to a subclass of Markov decision processes. We prove their correctness in a uniform way and study their effectiveness and efficiency using an implementation in the modes simulator for the Modest modelling language. The examples we use highlight the different strengths and limitations of the two approaches. We find that runtime may be affected by unnecessary recomputations, and thus also investigate the feasibility of caching results to speed up simulation at the cost of increased memory usage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10009-014-0349-7</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-2779
ispartof International journal on software tools for technology transfer, 2015-08, Vol.17 (4), p.429-456
issn 1433-2779
1433-2787
language eng
recordid cdi_proquest_miscellaneous_1718975610
source SpringerLink Journals - AutoHoldings
subjects Computer programs
Computer Science
Computer simulation
Mathematical models
Reduction
Run time (computers)
Simulation
Smc
Software Engineering
Software Engineering/Programming and Operating Systems
Sound
Statistical analysis
Statistical methods
Stochastic models
Theory of Computation
title Sound statistical model checking for MDP using partial order and confluence reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sound%20statistical%20model%20checking%20for%20MDP%20using%20partial%20order%20and%20confluence%20reduction&rft.jtitle=International%20journal%20on%20software%20tools%20for%20technology%20transfer&rft.au=Hartmanns,%20Arnd&rft.date=2015-08-01&rft.volume=17&rft.issue=4&rft.spage=429&rft.epage=456&rft.pages=429-456&rft.issn=1433-2779&rft.eissn=1433-2787&rft_id=info:doi/10.1007/s10009-014-0349-7&rft_dat=%3Cproquest_cross%3E1718975610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694472629&rft_id=info:pmid/&rfr_iscdi=true