Fracture Toughness Effects in Geomaterial Solid Particle Erosion
Effects of fracture toughness on the impingement of geomaterials (rocks and cementitious composites) by quartz particles at velocities between 40 and 140 m/s are investigated experimentally and analytically. If schist is excluded, relative erosion (in g/g) reduces according to a reverse power functi...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2015-07, Vol.48 (4), p.1573-1588 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1588 |
---|---|
container_issue | 4 |
container_start_page | 1573 |
container_title | Rock mechanics and rock engineering |
container_volume | 48 |
creator | Momber, A. W. |
description | Effects of fracture toughness on the impingement of geomaterials (rocks and cementitious composites) by quartz particles at velocities between 40 and 140 m/s are investigated experimentally and analytically. If schist is excluded, relative erosion (in g/g) reduces according to a reverse power function if fracture toughness increases. The power exponent depends on impingement velocity, and it varies between −0.64 and −1.33. Lateral cracking erosion models, developed for brittle materials, deliver too high values for relative material erosion. This discrepancy is partly attributed to stress rate effects. Effects of
R
-curve behavior seem to be marginal. An integral approach
E
R
=
K
1
·
E
R
P
+ (1 −
K
1
) ·
E
R
L
is introduced, which considers erosion due to plastic deformation and lateral cracking. A transition function
K
1
=
f
K
Ic
12
/
4
/
σ
C
23
/
4
is suggested in order to classify geomaterials according to their response against solid particle impingement. |
doi_str_mv | 10.1007/s00603-014-0658-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718975398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718975398</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-f4b9a0d5c43478f89dfe185e01f324735e257a5f0c79c336cdf53bddae27fd2a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN2AGzfRfE5mdkppq1BQsIK7kGZe6pTppCYz0P57U8aFCK7e5tzLfQeha0ruKCHqPhKSE44JFZjkssD7EzSiggssJP84RSOiGMcs5-wcXcS4IQnkqhihh1kwtusDZEvfrz9biDGbOge2i1ndZnPwW9NBqE2TvfmmrrJXE7raNpBNg4-1by_RmTNNhKufO0bvs-ly8oQXL_PnyeMCG65Yh51YlYZU0qZNqnBFWTmghQRCHWdCcQlMKiMdsaq0nOe2cpKvqsoAU65iho_R7dC7C_6rh9jpbR0tNI1pwfdRU0WLUkleFgm9-YNufB_atE7TvKSMlUyIRNGBsumRGMDpXai3Jhw0JfroVA9OdVKlj071PmXYkImJbdcQfjX_G_oGImp5aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1691229244</pqid></control><display><type>article</type><title>Fracture Toughness Effects in Geomaterial Solid Particle Erosion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Momber, A. W.</creator><creatorcontrib>Momber, A. W.</creatorcontrib><description>Effects of fracture toughness on the impingement of geomaterials (rocks and cementitious composites) by quartz particles at velocities between 40 and 140 m/s are investigated experimentally and analytically. If schist is excluded, relative erosion (in g/g) reduces according to a reverse power function if fracture toughness increases. The power exponent depends on impingement velocity, and it varies between −0.64 and −1.33. Lateral cracking erosion models, developed for brittle materials, deliver too high values for relative material erosion. This discrepancy is partly attributed to stress rate effects. Effects of
R
-curve behavior seem to be marginal. An integral approach
E
R
=
K
1
·
E
R
P
+ (1 −
K
1
) ·
E
R
L
is introduced, which considers erosion due to plastic deformation and lateral cracking. A transition function
K
1
=
f
K
Ic
12
/
4
/
σ
C
23
/
4
is suggested in order to classify geomaterials according to their response against solid particle impingement.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-014-0658-x</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anisotropy ; Civil Engineering ; Cracking (fracturing) ; Earth and Environmental Science ; Earth Sciences ; Erosion ; Fracture toughness ; Geology ; Geomaterials ; Geophysics/Geodesy ; Impingement ; Kinetics ; Mathematical models ; Original Paper ; Particulate composites ; Rock ; Rocks ; Soil erosion ; Stress analysis</subject><ispartof>Rock mechanics and rock engineering, 2015-07, Vol.48 (4), p.1573-1588</ispartof><rights>Springer-Verlag Wien 2014</rights><rights>Springer-Verlag Wien 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-f4b9a0d5c43478f89dfe185e01f324735e257a5f0c79c336cdf53bddae27fd2a3</citedby><cites>FETCH-LOGICAL-a372t-f4b9a0d5c43478f89dfe185e01f324735e257a5f0c79c336cdf53bddae27fd2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-014-0658-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-014-0658-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Momber, A. W.</creatorcontrib><title>Fracture Toughness Effects in Geomaterial Solid Particle Erosion</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>Effects of fracture toughness on the impingement of geomaterials (rocks and cementitious composites) by quartz particles at velocities between 40 and 140 m/s are investigated experimentally and analytically. If schist is excluded, relative erosion (in g/g) reduces according to a reverse power function if fracture toughness increases. The power exponent depends on impingement velocity, and it varies between −0.64 and −1.33. Lateral cracking erosion models, developed for brittle materials, deliver too high values for relative material erosion. This discrepancy is partly attributed to stress rate effects. Effects of
R
-curve behavior seem to be marginal. An integral approach
E
R
=
K
1
·
E
R
P
+ (1 −
K
1
) ·
E
R
L
is introduced, which considers erosion due to plastic deformation and lateral cracking. A transition function
K
1
=
f
K
Ic
12
/
4
/
σ
C
23
/
4
is suggested in order to classify geomaterials according to their response against solid particle impingement.</description><subject>Anisotropy</subject><subject>Civil Engineering</subject><subject>Cracking (fracturing)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Erosion</subject><subject>Fracture toughness</subject><subject>Geology</subject><subject>Geomaterials</subject><subject>Geophysics/Geodesy</subject><subject>Impingement</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Particulate composites</subject><subject>Rock</subject><subject>Rocks</subject><subject>Soil erosion</subject><subject>Stress analysis</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEURYMoWKs_wN2AGzfRfE5mdkppq1BQsIK7kGZe6pTppCYz0P57U8aFCK7e5tzLfQeha0ruKCHqPhKSE44JFZjkssD7EzSiggssJP84RSOiGMcs5-wcXcS4IQnkqhihh1kwtusDZEvfrz9biDGbOge2i1ndZnPwW9NBqE2TvfmmrrJXE7raNpBNg4-1by_RmTNNhKufO0bvs-ly8oQXL_PnyeMCG65Yh51YlYZU0qZNqnBFWTmghQRCHWdCcQlMKiMdsaq0nOe2cpKvqsoAU65iho_R7dC7C_6rh9jpbR0tNI1pwfdRU0WLUkleFgm9-YNufB_atE7TvKSMlUyIRNGBsumRGMDpXai3Jhw0JfroVA9OdVKlj071PmXYkImJbdcQfjX_G_oGImp5aw</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Momber, A. W.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150701</creationdate><title>Fracture Toughness Effects in Geomaterial Solid Particle Erosion</title><author>Momber, A. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-f4b9a0d5c43478f89dfe185e01f324735e257a5f0c79c336cdf53bddae27fd2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropy</topic><topic>Civil Engineering</topic><topic>Cracking (fracturing)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Erosion</topic><topic>Fracture toughness</topic><topic>Geology</topic><topic>Geomaterials</topic><topic>Geophysics/Geodesy</topic><topic>Impingement</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Particulate composites</topic><topic>Rock</topic><topic>Rocks</topic><topic>Soil erosion</topic><topic>Stress analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Momber, A. W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Momber, A. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture Toughness Effects in Geomaterial Solid Particle Erosion</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>48</volume><issue>4</issue><spage>1573</spage><epage>1588</epage><pages>1573-1588</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Effects of fracture toughness on the impingement of geomaterials (rocks and cementitious composites) by quartz particles at velocities between 40 and 140 m/s are investigated experimentally and analytically. If schist is excluded, relative erosion (in g/g) reduces according to a reverse power function if fracture toughness increases. The power exponent depends on impingement velocity, and it varies between −0.64 and −1.33. Lateral cracking erosion models, developed for brittle materials, deliver too high values for relative material erosion. This discrepancy is partly attributed to stress rate effects. Effects of
R
-curve behavior seem to be marginal. An integral approach
E
R
=
K
1
·
E
R
P
+ (1 −
K
1
) ·
E
R
L
is introduced, which considers erosion due to plastic deformation and lateral cracking. A transition function
K
1
=
f
K
Ic
12
/
4
/
σ
C
23
/
4
is suggested in order to classify geomaterials according to their response against solid particle impingement.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-014-0658-x</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2015-07, Vol.48 (4), p.1573-1588 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_miscellaneous_1718975398 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Civil Engineering Cracking (fracturing) Earth and Environmental Science Earth Sciences Erosion Fracture toughness Geology Geomaterials Geophysics/Geodesy Impingement Kinetics Mathematical models Original Paper Particulate composites Rock Rocks Soil erosion Stress analysis |
title | Fracture Toughness Effects in Geomaterial Solid Particle Erosion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20Toughness%20Effects%20in%20Geomaterial%20Solid%20Particle%20Erosion&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Momber,%20A.%20W.&rft.date=2015-07-01&rft.volume=48&rft.issue=4&rft.spage=1573&rft.epage=1588&rft.pages=1573-1588&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-014-0658-x&rft_dat=%3Cproquest_cross%3E1718975398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1691229244&rft_id=info:pmid/&rfr_iscdi=true |