In Vitro Inhibitory Assay of an Isolated Indoor Airborne Fungus from an Institutional Building of Computer Education by Using Potassium Sorbate

Currently, one of the main aspects of health and safety concern to facility owners and supervisors is indoor air quality. Meanwhile, pollution by airborne fungi in these facilities are acquiring more and more consideration due to its possible harmful side effects such as threats to occupiers’ health...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-07, Vol.773-774 (International Integrated Engineering Summit 2014), p.1091-1095
Hauptverfasser: Leman, Abdul Mutalib, Er, Chin Ming, Sunar, N.M., Gani, Paran, Jamal, N.A., Emparan, Q., Othman, Norzila, Emparan, Quin Anak, Parjo, U.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, one of the main aspects of health and safety concern to facility owners and supervisors is indoor air quality. Meanwhile, pollution by airborne fungi in these facilities are acquiring more and more consideration due to its possible harmful side effects such as threats to occupiers’ health and damage to building parts and furniture. One of the recommendations to solve these indoor fungi pollution is bioactive compound which can act as a biocide. However, assessment of this compound in the real environment is often time-consuming and impractical. In this study, a bioactive compound, potassium sorbate which is commonly applied in food manufacturing was assessed for its efficiency as a biocide to restrict the growth of an isolated airborne fungus using an in vitro inhibition assay. The fungus was isolated from a new building of tertiary education of computer studies. It was grown on both biocide-incorporated MEA and untreated MEA. The diameter of the fungal colonies was noted time to time. The diameter of the colony of the treated fungus was downsized by 41.25% averagely in comparison with the untreated fungus. It was shown that potassium sorbate can restrict the growth rate of the isolated airborne fungus.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.773-774.1091