Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis

Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-08, Vol.87 (15), p.7795-7802
Hauptverfasser: Kassenböhmer, Rainer, Draude, Felix, Körsgen, Martin, Pelster, Andreas, Arlinghaus, Heinrich F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7802
container_issue 15
container_start_page 7795
container_title Analytical chemistry (Washington)
container_volume 87
creator Kassenböhmer, Rainer
Draude, Felix
Körsgen, Martin
Pelster, Andreas
Arlinghaus, Heinrich F
description Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an algorithm which enables us to identify and calculate the percentages of the ingredients of lipid mixtures from single-pixel time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra in model systems. The algorithm is based on a linear mixing model. Discriminant analysis is used to reduce the dimension of the data space. Calculations were separately performed for positive and negative ion mass spectra. Phosphatidylcholine and sphingomyeline which have identical headgroups and cannot be easily distinguished from another by positive ion mass spectra were included in the analysis. The algorithm outlined may more generally be used to calculate the percentages of ingredients of mixtures from spectra acquired by quite different methods such as X-ray photoelectron spectroscopy.
doi_str_mv 10.1021/acs.analchem.5b01456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718970208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718970208</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-7bb93362034295fe86dc79acb95043896899b9bd254c9ec0245f7fc7c3a909353</originalsourceid><addsrcrecordid>eNqNkV9r2zAUxcVYWbJ036AUwV764uzqv_UYQrsWUlaa5NnIstwq2FZm2dB--ylNusEexl50Qfqdc3XvQeiCwJwAJd-MjXPTmcY-u3YuSiBcyA9oSgSFTOY5_YimAMAyqgAm6HOMOwBCgMhPaEIl4RJAT1FYJoexMYMPHQ41vndt2ZvO4ZXf-wo_Hh4i3kbfPeF1OhqXPfgX1-CNb10W6uym8U_PA147G7rK9K_4Lhndmxjxeu_s0IfWDel2kX76Gn08R2e1aaL7cqoztL253ixvs9WP73fLxSoznMshU2WpGZMUGKda1C6XlVXa2FIL4CzXMte61GVFBbfaWaBc1Kq2yjKjQTPBZujq6Lvvw8_RxaFofbSuadJsYYwFUSTXCijk_4FCYgVTPKFf_0J3YezTaG8UVYQywhLFj5TtQ4y9q4t979u0m4JAcciuSNkV79kVp-yS7PJkPpatq36L3sNKAByBg_xP4395_gIgEKcm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702712313</pqid></control><display><type>article</type><title>Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis</title><source>ACS Publications</source><creator>Kassenböhmer, Rainer ; Draude, Felix ; Körsgen, Martin ; Pelster, Andreas ; Arlinghaus, Heinrich F</creator><creatorcontrib>Kassenböhmer, Rainer ; Draude, Felix ; Körsgen, Martin ; Pelster, Andreas ; Arlinghaus, Heinrich F</creatorcontrib><description>Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an algorithm which enables us to identify and calculate the percentages of the ingredients of lipid mixtures from single-pixel time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra in model systems. The algorithm is based on a linear mixing model. Discriminant analysis is used to reduce the dimension of the data space. Calculations were separately performed for positive and negative ion mass spectra. Phosphatidylcholine and sphingomyeline which have identical headgroups and cannot be easily distinguished from another by positive ion mass spectra were included in the analysis. The algorithm outlined may more generally be used to calculate the percentages of ingredients of mixtures from spectra acquired by quite different methods such as X-ray photoelectron spectroscopy.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b01456</identifier><identifier>PMID: 26146009</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Discriminant analysis ; Ingredients ; Ions ; Lipids ; Mass spectra ; Mass spectrometry ; Mass spectroscopy ; Mathematical models ; Membranes ; Secondary ion mass spectrometry ; Spectra</subject><ispartof>Analytical chemistry (Washington), 2015-08, Vol.87 (15), p.7795-7802</ispartof><rights>Copyright © American Chemical Society</rights><rights>Copyright American Chemical Society Aug 4, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-7bb93362034295fe86dc79acb95043896899b9bd254c9ec0245f7fc7c3a909353</citedby><cites>FETCH-LOGICAL-a446t-7bb93362034295fe86dc79acb95043896899b9bd254c9ec0245f7fc7c3a909353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b01456$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b01456$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26146009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kassenböhmer, Rainer</creatorcontrib><creatorcontrib>Draude, Felix</creatorcontrib><creatorcontrib>Körsgen, Martin</creatorcontrib><creatorcontrib>Pelster, Andreas</creatorcontrib><creatorcontrib>Arlinghaus, Heinrich F</creatorcontrib><title>Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an algorithm which enables us to identify and calculate the percentages of the ingredients of lipid mixtures from single-pixel time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra in model systems. The algorithm is based on a linear mixing model. Discriminant analysis is used to reduce the dimension of the data space. Calculations were separately performed for positive and negative ion mass spectra. Phosphatidylcholine and sphingomyeline which have identical headgroups and cannot be easily distinguished from another by positive ion mass spectra were included in the analysis. The algorithm outlined may more generally be used to calculate the percentages of ingredients of mixtures from spectra acquired by quite different methods such as X-ray photoelectron spectroscopy.</description><subject>Algorithms</subject><subject>Discriminant analysis</subject><subject>Ingredients</subject><subject>Ions</subject><subject>Lipids</subject><subject>Mass spectra</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Secondary ion mass spectrometry</subject><subject>Spectra</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkV9r2zAUxcVYWbJ036AUwV764uzqv_UYQrsWUlaa5NnIstwq2FZm2dB--ylNusEexl50Qfqdc3XvQeiCwJwAJd-MjXPTmcY-u3YuSiBcyA9oSgSFTOY5_YimAMAyqgAm6HOMOwBCgMhPaEIl4RJAT1FYJoexMYMPHQ41vndt2ZvO4ZXf-wo_Hh4i3kbfPeF1OhqXPfgX1-CNb10W6uym8U_PA147G7rK9K_4Lhndmxjxeu_s0IfWDel2kX76Gn08R2e1aaL7cqoztL253ixvs9WP73fLxSoznMshU2WpGZMUGKda1C6XlVXa2FIL4CzXMte61GVFBbfaWaBc1Kq2yjKjQTPBZujq6Lvvw8_RxaFofbSuadJsYYwFUSTXCijk_4FCYgVTPKFf_0J3YezTaG8UVYQywhLFj5TtQ4y9q4t979u0m4JAcciuSNkV79kVp-yS7PJkPpatq36L3sNKAByBg_xP4395_gIgEKcm</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Kassenböhmer, Rainer</creator><creator>Draude, Felix</creator><creator>Körsgen, Martin</creator><creator>Pelster, Andreas</creator><creator>Arlinghaus, Heinrich F</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150804</creationdate><title>Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis</title><author>Kassenböhmer, Rainer ; Draude, Felix ; Körsgen, Martin ; Pelster, Andreas ; Arlinghaus, Heinrich F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-7bb93362034295fe86dc79acb95043896899b9bd254c9ec0245f7fc7c3a909353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Discriminant analysis</topic><topic>Ingredients</topic><topic>Ions</topic><topic>Lipids</topic><topic>Mass spectra</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Secondary ion mass spectrometry</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kassenböhmer, Rainer</creatorcontrib><creatorcontrib>Draude, Felix</creatorcontrib><creatorcontrib>Körsgen, Martin</creatorcontrib><creatorcontrib>Pelster, Andreas</creatorcontrib><creatorcontrib>Arlinghaus, Heinrich F</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kassenböhmer, Rainer</au><au>Draude, Felix</au><au>Körsgen, Martin</au><au>Pelster, Andreas</au><au>Arlinghaus, Heinrich F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>87</volume><issue>15</issue><spage>7795</spage><epage>7802</epage><pages>7795-7802</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an algorithm which enables us to identify and calculate the percentages of the ingredients of lipid mixtures from single-pixel time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra in model systems. The algorithm is based on a linear mixing model. Discriminant analysis is used to reduce the dimension of the data space. Calculations were separately performed for positive and negative ion mass spectra. Phosphatidylcholine and sphingomyeline which have identical headgroups and cannot be easily distinguished from another by positive ion mass spectra were included in the analysis. The algorithm outlined may more generally be used to calculate the percentages of ingredients of mixtures from spectra acquired by quite different methods such as X-ray photoelectron spectroscopy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26146009</pmid><doi>10.1021/acs.analchem.5b01456</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-08, Vol.87 (15), p.7795-7802
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1718970208
source ACS Publications
subjects Algorithms
Discriminant analysis
Ingredients
Ions
Lipids
Mass spectra
Mass spectrometry
Mass spectroscopy
Mathematical models
Membranes
Secondary ion mass spectrometry
Spectra
title Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculation%20of%20Membrane%20Lipid%20Ratios%20Using%20Single-Pixel%20Time-of-Flight%20Secondary%20Ion%20Mass%20Spectrometry%20Analysis&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kassenbo%CC%88hmer,%20Rainer&rft.date=2015-08-04&rft.volume=87&rft.issue=15&rft.spage=7795&rft.epage=7802&rft.pages=7795-7802&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b01456&rft_dat=%3Cproquest_cross%3E1718970208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702712313&rft_id=info:pmid/26146009&rfr_iscdi=true