Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics
We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-08, Vol.87 (15), p.7825-7832 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7832 |
---|---|
container_issue | 15 |
container_start_page | 7825 |
container_title | Analytical chemistry (Washington) |
container_volume | 87 |
creator | Wagner, Caleb E Macedo, Lucyano J. A Opdahl, Aric |
description | We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment. |
doi_str_mv | 10.1021/acs.analchem.5b01518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718969049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701894331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EotvCGyAUiQuXLDOO49jHpYIWtVKlslyJJsmETZU4wU4O-_b1sluQOCBOlu3v_z3yJ8QbhDWCxA9UhzU56usdD-u8AszRPBMrzCWk2hj5XKwAIEtlAXAmzkN4AEAE1C_FmdSoQBV6Jb5veZjY07x4Tq48NR27OdlMkx-p3iXt6JN7mrqm3yebEDiEzv1IvrIL8eJj55rD9qZzPHd1SMg1yXbHfhibvaMhHr0SL1rqA78-rRfi2-dP28vr9Pbu6svl5jYlBXZONRK2gFaqOo6mi0IrZbJWtlaR0qzyCvOcs0YaXejCaJsZA7alVgJVsoLsQrw_9sa5fy4c5nLoQs19T47HJZRYoLHagrL_gUJkVZZhRN_9hT6Mi49__ouSBUppdaTUkar9GILntpx8N5DflwjlQVUZVZVPqsqTqhh7eypfqoGb36EnNxGAI3CI_3n4X52P-JGg7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702712296</pqid></control><display><type>article</type><title>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</title><source>ACS Publications</source><source>MEDLINE</source><creator>Wagner, Caleb E ; Macedo, Lucyano J. A ; Opdahl, Aric</creator><creatorcontrib>Wagner, Caleb E ; Macedo, Lucyano J. A ; Opdahl, Aric</creatorcontrib><description>We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b01518</identifier><identifier>PMID: 26140476</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; Binding sites ; Biosensing Techniques - methods ; Calibration ; Deoxyribonucleic acid ; DNA ; Kinetics ; Melts ; Quantitative analysis ; Sensors ; Surface Plasmon Resonance ; Temperature ; Temperature dependence ; Temperature gradient ; Thermodynamics ; Time Factors</subject><ispartof>Analytical chemistry (Washington), 2015-08, Vol.87 (15), p.7825-7832</ispartof><rights>Copyright © American Chemical Society</rights><rights>Copyright American Chemical Society Aug 4, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</citedby><cites>FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b01518$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b01518$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26140476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Caleb E</creatorcontrib><creatorcontrib>Macedo, Lucyano J. A</creatorcontrib><creatorcontrib>Opdahl, Aric</creatorcontrib><title>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.</description><subject>Binding</subject><subject>Binding sites</subject><subject>Biosensing Techniques - methods</subject><subject>Calibration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Kinetics</subject><subject>Melts</subject><subject>Quantitative analysis</subject><subject>Sensors</subject><subject>Surface Plasmon Resonance</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature gradient</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EotvCGyAUiQuXLDOO49jHpYIWtVKlslyJJsmETZU4wU4O-_b1sluQOCBOlu3v_z3yJ8QbhDWCxA9UhzU56usdD-u8AszRPBMrzCWk2hj5XKwAIEtlAXAmzkN4AEAE1C_FmdSoQBV6Jb5veZjY07x4Tq48NR27OdlMkx-p3iXt6JN7mrqm3yebEDiEzv1IvrIL8eJj55rD9qZzPHd1SMg1yXbHfhibvaMhHr0SL1rqA78-rRfi2-dP28vr9Pbu6svl5jYlBXZONRK2gFaqOo6mi0IrZbJWtlaR0qzyCvOcs0YaXejCaJsZA7alVgJVsoLsQrw_9sa5fy4c5nLoQs19T47HJZRYoLHagrL_gUJkVZZhRN_9hT6Mi49__ouSBUppdaTUkar9GILntpx8N5DflwjlQVUZVZVPqsqTqhh7eypfqoGb36EnNxGAI3CI_3n4X52P-JGg7A</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Wagner, Caleb E</creator><creator>Macedo, Lucyano J. A</creator><creator>Opdahl, Aric</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150804</creationdate><title>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</title><author>Wagner, Caleb E ; Macedo, Lucyano J. A ; Opdahl, Aric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binding</topic><topic>Binding sites</topic><topic>Biosensing Techniques - methods</topic><topic>Calibration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Kinetics</topic><topic>Melts</topic><topic>Quantitative analysis</topic><topic>Sensors</topic><topic>Surface Plasmon Resonance</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature gradient</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Caleb E</creatorcontrib><creatorcontrib>Macedo, Lucyano J. A</creatorcontrib><creatorcontrib>Opdahl, Aric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Caleb E</au><au>Macedo, Lucyano J. A</au><au>Opdahl, Aric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>87</volume><issue>15</issue><spage>7825</spage><epage>7832</epage><pages>7825-7832</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26140476</pmid><doi>10.1021/acs.analchem.5b01518</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2015-08, Vol.87 (15), p.7825-7832 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718969049 |
source | ACS Publications; MEDLINE |
subjects | Binding Binding sites Biosensing Techniques - methods Calibration Deoxyribonucleic acid DNA Kinetics Melts Quantitative analysis Sensors Surface Plasmon Resonance Temperature Temperature dependence Temperature gradient Thermodynamics Time Factors |
title | Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Gradient%20Approach%20for%20Rapidly%20Assessing%20Sensor%20Binding%20Kinetics%20and%20Thermodynamics&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wagner,%20Caleb%20E&rft.date=2015-08-04&rft.volume=87&rft.issue=15&rft.spage=7825&rft.epage=7832&rft.pages=7825-7832&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b01518&rft_dat=%3Cproquest_cross%3E1701894331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702712296&rft_id=info:pmid/26140476&rfr_iscdi=true |