Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics

We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-08, Vol.87 (15), p.7825-7832
Hauptverfasser: Wagner, Caleb E, Macedo, Lucyano J. A, Opdahl, Aric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7832
container_issue 15
container_start_page 7825
container_title Analytical chemistry (Washington)
container_volume 87
creator Wagner, Caleb E
Macedo, Lucyano J. A
Opdahl, Aric
description We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.
doi_str_mv 10.1021/acs.analchem.5b01518
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718969049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1701894331</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EotvCGyAUiQuXLDOO49jHpYIWtVKlslyJJsmETZU4wU4O-_b1sluQOCBOlu3v_z3yJ8QbhDWCxA9UhzU56usdD-u8AszRPBMrzCWk2hj5XKwAIEtlAXAmzkN4AEAE1C_FmdSoQBV6Jb5veZjY07x4Tq48NR27OdlMkx-p3iXt6JN7mrqm3yebEDiEzv1IvrIL8eJj55rD9qZzPHd1SMg1yXbHfhibvaMhHr0SL1rqA78-rRfi2-dP28vr9Pbu6svl5jYlBXZONRK2gFaqOo6mi0IrZbJWtlaR0qzyCvOcs0YaXejCaJsZA7alVgJVsoLsQrw_9sa5fy4c5nLoQs19T47HJZRYoLHagrL_gUJkVZZhRN_9hT6Mi49__ouSBUppdaTUkar9GILntpx8N5DflwjlQVUZVZVPqsqTqhh7eypfqoGb36EnNxGAI3CI_3n4X52P-JGg7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1702712296</pqid></control><display><type>article</type><title>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</title><source>ACS Publications</source><source>MEDLINE</source><creator>Wagner, Caleb E ; Macedo, Lucyano J. A ; Opdahl, Aric</creator><creatorcontrib>Wagner, Caleb E ; Macedo, Lucyano J. A ; Opdahl, Aric</creatorcontrib><description>We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.5b01518</identifier><identifier>PMID: 26140476</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; Binding sites ; Biosensing Techniques - methods ; Calibration ; Deoxyribonucleic acid ; DNA ; Kinetics ; Melts ; Quantitative analysis ; Sensors ; Surface Plasmon Resonance ; Temperature ; Temperature dependence ; Temperature gradient ; Thermodynamics ; Time Factors</subject><ispartof>Analytical chemistry (Washington), 2015-08, Vol.87 (15), p.7825-7832</ispartof><rights>Copyright © American Chemical Society</rights><rights>Copyright American Chemical Society Aug 4, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</citedby><cites>FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.5b01518$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.5b01518$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26140476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Caleb E</creatorcontrib><creatorcontrib>Macedo, Lucyano J. A</creatorcontrib><creatorcontrib>Opdahl, Aric</creatorcontrib><title>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.</description><subject>Binding</subject><subject>Binding sites</subject><subject>Biosensing Techniques - methods</subject><subject>Calibration</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Kinetics</subject><subject>Melts</subject><subject>Quantitative analysis</subject><subject>Sensors</subject><subject>Surface Plasmon Resonance</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature gradient</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EotvCGyAUiQuXLDOO49jHpYIWtVKlslyJJsmETZU4wU4O-_b1sluQOCBOlu3v_z3yJ8QbhDWCxA9UhzU56usdD-u8AszRPBMrzCWk2hj5XKwAIEtlAXAmzkN4AEAE1C_FmdSoQBV6Jb5veZjY07x4Tq48NR27OdlMkx-p3iXt6JN7mrqm3yebEDiEzv1IvrIL8eJj55rD9qZzPHd1SMg1yXbHfhibvaMhHr0SL1rqA78-rRfi2-dP28vr9Pbu6svl5jYlBXZONRK2gFaqOo6mi0IrZbJWtlaR0qzyCvOcs0YaXejCaJsZA7alVgJVsoLsQrw_9sa5fy4c5nLoQs19T47HJZRYoLHagrL_gUJkVZZhRN_9hT6Mi49__ouSBUppdaTUkar9GILntpx8N5DflwjlQVUZVZVPqsqTqhh7eypfqoGb36EnNxGAI3CI_3n4X52P-JGg7A</recordid><startdate>20150804</startdate><enddate>20150804</enddate><creator>Wagner, Caleb E</creator><creator>Macedo, Lucyano J. A</creator><creator>Opdahl, Aric</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150804</creationdate><title>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</title><author>Wagner, Caleb E ; Macedo, Lucyano J. A ; Opdahl, Aric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-61a1f01924c26167764483f2f94a46e45b155e3d28676786938809faf20ab2b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Binding</topic><topic>Binding sites</topic><topic>Biosensing Techniques - methods</topic><topic>Calibration</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Kinetics</topic><topic>Melts</topic><topic>Quantitative analysis</topic><topic>Sensors</topic><topic>Surface Plasmon Resonance</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature gradient</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Caleb E</creatorcontrib><creatorcontrib>Macedo, Lucyano J. A</creatorcontrib><creatorcontrib>Opdahl, Aric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Caleb E</au><au>Macedo, Lucyano J. A</au><au>Opdahl, Aric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2015-08-04</date><risdate>2015</risdate><volume>87</volume><issue>15</issue><spage>7825</spage><epage>7832</epage><pages>7825-7832</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We report a highly resolved approach for quantitatively measuring the temperature dependence of molecular binding in a sensor format. The method is based on surface plasmon resonance (SPR) imaging measurements made across a spatial temperature gradient. Simultaneous recording of sensor response over the range of temperatures spanned by the gradient avoids many of the complications that arise in the analysis of SPR measurements where temperature is varied. In addition to simplifying quantitative analysis of binding interactions, the method allows the temperature dependence of binding to be monitored as a function of time, and provides a straightforward route for calibrating how temperature varies across the gradient. Using DNA hybridization as an example, we show how the gradient approach can be used to measure the temperature dependence of binding kinetics and thermodynamics (e.g., melt/denaturation profile) in a single experiment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26140476</pmid><doi>10.1021/acs.analchem.5b01518</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2015-08, Vol.87 (15), p.7825-7832
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1718969049
source ACS Publications; MEDLINE
subjects Binding
Binding sites
Biosensing Techniques - methods
Calibration
Deoxyribonucleic acid
DNA
Kinetics
Melts
Quantitative analysis
Sensors
Surface Plasmon Resonance
Temperature
Temperature dependence
Temperature gradient
Thermodynamics
Time Factors
title Temperature Gradient Approach for Rapidly Assessing Sensor Binding Kinetics and Thermodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Gradient%20Approach%20for%20Rapidly%20Assessing%20Sensor%20Binding%20Kinetics%20and%20Thermodynamics&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wagner,%20Caleb%20E&rft.date=2015-08-04&rft.volume=87&rft.issue=15&rft.spage=7825&rft.epage=7832&rft.pages=7825-7832&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.5b01518&rft_dat=%3Cproquest_cross%3E1701894331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1702712296&rft_id=info:pmid/26140476&rfr_iscdi=true