A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection

Application of Fast Fourier Transform (FFT) in machinery faults detection is known to be only effective if fault is of repetitive in nature and considering severe. While minor and transient faults are usually remain undetected based on vibration spectrum analysis. Wavelet analysis is relatively new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2015-07, Vol.773-774 (International Integrated Engineering Summit 2014), p.90-94
Hauptverfasser: Hee, Lim Meng, Leong, M. Salman, Abdelrhman, Ahmed M., Ngui, Wai Keng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue International Integrated Engineering Summit 2014
container_start_page 90
container_title Applied Mechanics and Materials
container_volume 773-774
creator Hee, Lim Meng
Leong, M. Salman
Abdelrhman, Ahmed M.
Ngui, Wai Keng
description Application of Fast Fourier Transform (FFT) in machinery faults detection is known to be only effective if fault is of repetitive in nature and considering severe. While minor and transient faults are usually remain undetected based on vibration spectrum analysis. Wavelet analysis is relatively new technique which is still suffered from inadequately in its time-frequency resolution. In this paper, ahmedrabak_time wavelet is proposed based on the wavelet reassignment technique for Morlet mother wavelet. The proposed wavelet analysis is compared to the conventional wavelet analysis for machinery faults detection based on simulated signal. The results showed that the proposed wavelet has a better resolution than conventional wavelet analysis which could clearly indicate the presence and the location of the fault.
doi_str_mv 10.4028/www.scientific.net/AMM.773-774.90
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718965573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3746007611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3020-2a6417e1bec55573baaa74d430e9cfba094f4b50ba39a8cce315d07e01ff27053</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS3-SJTS72CJCxySjmMnjo-rpQWkrpCgiKM18Y5pqmyy2M6u9tvjsEggThxsH-b5zcz7MfZWQKmgaq-Px2MZXU9j6n3vypHS9WqzKbWWhdaqNPCEXYimqQqt2uopuzK6lSBbWSttmme_alAYKZsX7GWMjwCNEqq9YHbF19NujwFTfyD-Jc3bE588_0wYY_99pG2uj4el7zTiwL_hgQZK_D7gGP0UdjxffIPuoR8pnPgtzkOK_B0lcsuXV-y5xyHS1e_3kn29vblffyjuPr3_uF7dFU5CBUWFeR5NoiNX17WWHSJqtVUSyDjfIRjlVVdDh9Jg6xxJUW9BEwjvKw21vGRvzr77MP2YKSa766OjYcCRpjlaoUVrmsU6S1__I32c5pCXy6rGNEbqnFlWrc4qF6YYA3m7D_0Ow8kKsAsSm5HYP0hsRmIzEpuR5KOsgeyxPnukJa2cyMNfrf7b5SentZz-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696937479</pqid></control><display><type>article</type><title>A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection</title><source>Scientific.net Journals</source><creator>Hee, Lim Meng ; Leong, M. Salman ; Abdelrhman, Ahmed M. ; Ngui, Wai Keng</creator><creatorcontrib>Hee, Lim Meng ; Leong, M. Salman ; Abdelrhman, Ahmed M. ; Ngui, Wai Keng</creatorcontrib><description>Application of Fast Fourier Transform (FFT) in machinery faults detection is known to be only effective if fault is of repetitive in nature and considering severe. While minor and transient faults are usually remain undetected based on vibration spectrum analysis. Wavelet analysis is relatively new technique which is still suffered from inadequately in its time-frequency resolution. In this paper, ahmedrabak_time wavelet is proposed based on the wavelet reassignment technique for Morlet mother wavelet. The proposed wavelet analysis is compared to the conventional wavelet analysis for machinery faults detection based on simulated signal. The results showed that the proposed wavelet has a better resolution than conventional wavelet analysis which could clearly indicate the presence and the location of the fault.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 9783038354796</identifier><identifier>ISBN: 3038354791</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.773-774.90</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Fault detection ; Faults ; Fourier transforms ; Machinery ; Simulation ; Vibration ; Wavelet ; Wavelet analysis</subject><ispartof>Applied Mechanics and Materials, 2015-07, Vol.773-774 (International Integrated Engineering Summit 2014), p.90-94</ispartof><rights>2015 Abdelrhman et al.</rights><rights>Copyright Trans Tech Publications Ltd. Jul 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3020-2a6417e1bec55573baaa74d430e9cfba094f4b50ba39a8cce315d07e01ff27053</citedby><cites>FETCH-LOGICAL-c3020-2a6417e1bec55573baaa74d430e9cfba094f4b50ba39a8cce315d07e01ff27053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4014?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hee, Lim Meng</creatorcontrib><creatorcontrib>Leong, M. Salman</creatorcontrib><creatorcontrib>Abdelrhman, Ahmed M.</creatorcontrib><creatorcontrib>Ngui, Wai Keng</creatorcontrib><title>A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection</title><title>Applied Mechanics and Materials</title><description>Application of Fast Fourier Transform (FFT) in machinery faults detection is known to be only effective if fault is of repetitive in nature and considering severe. While minor and transient faults are usually remain undetected based on vibration spectrum analysis. Wavelet analysis is relatively new technique which is still suffered from inadequately in its time-frequency resolution. In this paper, ahmedrabak_time wavelet is proposed based on the wavelet reassignment technique for Morlet mother wavelet. The proposed wavelet analysis is compared to the conventional wavelet analysis for machinery faults detection based on simulated signal. The results showed that the proposed wavelet has a better resolution than conventional wavelet analysis which could clearly indicate the presence and the location of the fault.</description><subject>Fault detection</subject><subject>Faults</subject><subject>Fourier transforms</subject><subject>Machinery</subject><subject>Simulation</subject><subject>Vibration</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>9783038354796</isbn><isbn>3038354791</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU9v1DAQxS3-SJTS72CJCxySjmMnjo-rpQWkrpCgiKM18Y5pqmyy2M6u9tvjsEggThxsH-b5zcz7MfZWQKmgaq-Px2MZXU9j6n3vypHS9WqzKbWWhdaqNPCEXYimqQqt2uopuzK6lSBbWSttmme_alAYKZsX7GWMjwCNEqq9YHbF19NujwFTfyD-Jc3bE588_0wYY_99pG2uj4el7zTiwL_hgQZK_D7gGP0UdjxffIPuoR8pnPgtzkOK_B0lcsuXV-y5xyHS1e_3kn29vblffyjuPr3_uF7dFU5CBUWFeR5NoiNX17WWHSJqtVUSyDjfIRjlVVdDh9Jg6xxJUW9BEwjvKw21vGRvzr77MP2YKSa766OjYcCRpjlaoUVrmsU6S1__I32c5pCXy6rGNEbqnFlWrc4qF6YYA3m7D_0Ow8kKsAsSm5HYP0hsRmIzEpuR5KOsgeyxPnukJa2cyMNfrf7b5SentZz-</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Hee, Lim Meng</creator><creator>Leong, M. Salman</creator><creator>Abdelrhman, Ahmed M.</creator><creator>Ngui, Wai Keng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20150701</creationdate><title>A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection</title><author>Hee, Lim Meng ; Leong, M. Salman ; Abdelrhman, Ahmed M. ; Ngui, Wai Keng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3020-2a6417e1bec55573baaa74d430e9cfba094f4b50ba39a8cce315d07e01ff27053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Fault detection</topic><topic>Faults</topic><topic>Fourier transforms</topic><topic>Machinery</topic><topic>Simulation</topic><topic>Vibration</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hee, Lim Meng</creatorcontrib><creatorcontrib>Leong, M. Salman</creatorcontrib><creatorcontrib>Abdelrhman, Ahmed M.</creatorcontrib><creatorcontrib>Ngui, Wai Keng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hee, Lim Meng</au><au>Leong, M. Salman</au><au>Abdelrhman, Ahmed M.</au><au>Ngui, Wai Keng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>773-774</volume><issue>International Integrated Engineering Summit 2014</issue><spage>90</spage><epage>94</epage><pages>90-94</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>9783038354796</isbn><isbn>3038354791</isbn><abstract>Application of Fast Fourier Transform (FFT) in machinery faults detection is known to be only effective if fault is of repetitive in nature and considering severe. While minor and transient faults are usually remain undetected based on vibration spectrum analysis. Wavelet analysis is relatively new technique which is still suffered from inadequately in its time-frequency resolution. In this paper, ahmedrabak_time wavelet is proposed based on the wavelet reassignment technique for Morlet mother wavelet. The proposed wavelet analysis is compared to the conventional wavelet analysis for machinery faults detection based on simulated signal. The results showed that the proposed wavelet has a better resolution than conventional wavelet analysis which could clearly indicate the presence and the location of the fault.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.773-774.90</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2015-07, Vol.773-774 (International Integrated Engineering Summit 2014), p.90-94
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_miscellaneous_1718965573
source Scientific.net Journals
subjects Fault detection
Faults
Fourier transforms
Machinery
Simulation
Vibration
Wavelet
Wavelet analysis
title A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparative%20Study%20of%20Reassigned%20Conventional%20Wavelet%20Transform%20for%20Machinery%20Faults%20Detection&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Hee,%20Lim%20Meng&rft.date=2015-07-01&rft.volume=773-774&rft.issue=International%20Integrated%20Engineering%20Summit%202014&rft.spage=90&rft.epage=94&rft.pages=90-94&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=9783038354796&rft.isbn_list=3038354791&rft_id=info:doi/10.4028/www.scientific.net/AMM.773-774.90&rft_dat=%3Cproquest_cross%3E3746007611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696937479&rft_id=info:pmid/&rfr_iscdi=true