Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging
Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composi...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-08, Vol.642, p.49-56 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | |
container_start_page | 49 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 642 |
creator | Liao, Wenjun Ye, Bing Zhang, Li Zhou, Hao Guo, Wei Wang, Qudong Li, Wenzhen |
description | Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%. |
doi_str_mv | 10.1016/j.msea.2015.06.079 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718962754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315301337</els_id><sourcerecordid>1718962754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBBIDAs_wMlHLgl2PHlY4oJGsCAt4gCcLafdGXqU2MF2Vsx_8ME4Gs6culWqKnVXMfZailoK2b291EtCWzdCtrXoatHrJ-wgh15VR626p-wgdCOrVmj1nL1I6SKEkEfRHtifLwQxpBw3yFtEjo9h3jIFz613fEH4aT2Bnfkaw4oxEyYeJv6NTtxbH1ZbIJgLGJH8FCJgUdmzx0TbUrYc6TeHsKwhUcbdBTClQhqvHK4wE3CYQwEqR8iLwZn8-SV7Ntk54at_8479-Pjh--lT9fD1_vPp_UMFSqlcubbR4HqhJjkMTo0SjziglCigAz06Z3EUYpwmhUqoFifd9T06aMZGaZhA3bE3N99y1q8NUzYLJcB5th7Dlozs5aC7pm-PhdrcqHtaKeJk1kiLjVcjhdkrMBezV2D2CozoTKmgiN7dRFieeCSMJgGhLxlRRMjGBfqf_C-52pWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718962754</pqid></control><display><type>article</type><title>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liao, Wenjun ; Ye, Bing ; Zhang, Li ; Zhou, Hao ; Guo, Wei ; Wang, Qudong ; Li, Wenzhen</creator><creatorcontrib>Liao, Wenjun ; Ye, Bing ; Zhang, Li ; Zhou, Hao ; Guo, Wei ; Wang, Qudong ; Li, Wenzhen</creatorcontrib><description>Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.06.079</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Closed die forging ; Cyclic closed-die forging (CCDF) ; Evolution ; Forging ; Grain refinement ; Magnesium ; Magnesium matrix nanocomposite ; Mechanical properties ; Microstructure ; Nanoparticle distribution ; Silicon carbide ; Ultimate tensile strength</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-08, Vol.642, p.49-56</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</citedby><cites>FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509315301337$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Liao, Wenjun</creatorcontrib><creatorcontrib>Ye, Bing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Qudong</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><title>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.</description><subject>Closed die forging</subject><subject>Cyclic closed-die forging (CCDF)</subject><subject>Evolution</subject><subject>Forging</subject><subject>Grain refinement</subject><subject>Magnesium</subject><subject>Magnesium matrix nanocomposite</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoparticle distribution</subject><subject>Silicon carbide</subject><subject>Ultimate tensile strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQtBBIDAs_wMlHLgl2PHlY4oJGsCAt4gCcLafdGXqU2MF2Vsx_8ME4Gs6culWqKnVXMfZailoK2b291EtCWzdCtrXoatHrJ-wgh15VR626p-wgdCOrVmj1nL1I6SKEkEfRHtifLwQxpBw3yFtEjo9h3jIFz613fEH4aT2Bnfkaw4oxEyYeJv6NTtxbH1ZbIJgLGJH8FCJgUdmzx0TbUrYc6TeHsKwhUcbdBTClQhqvHK4wE3CYQwEqR8iLwZn8-SV7Ntk54at_8479-Pjh--lT9fD1_vPp_UMFSqlcubbR4HqhJjkMTo0SjziglCigAz06Z3EUYpwmhUqoFifd9T06aMZGaZhA3bE3N99y1q8NUzYLJcB5th7Dlozs5aC7pm-PhdrcqHtaKeJk1kiLjVcjhdkrMBezV2D2CozoTKmgiN7dRFieeCSMJgGhLxlRRMjGBfqf_C-52pWg</recordid><startdate>20150826</startdate><enddate>20150826</enddate><creator>Liao, Wenjun</creator><creator>Ye, Bing</creator><creator>Zhang, Li</creator><creator>Zhou, Hao</creator><creator>Guo, Wei</creator><creator>Wang, Qudong</creator><creator>Li, Wenzhen</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150826</creationdate><title>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</title><author>Liao, Wenjun ; Ye, Bing ; Zhang, Li ; Zhou, Hao ; Guo, Wei ; Wang, Qudong ; Li, Wenzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Closed die forging</topic><topic>Cyclic closed-die forging (CCDF)</topic><topic>Evolution</topic><topic>Forging</topic><topic>Grain refinement</topic><topic>Magnesium</topic><topic>Magnesium matrix nanocomposite</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoparticle distribution</topic><topic>Silicon carbide</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Wenjun</creatorcontrib><creatorcontrib>Ye, Bing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Qudong</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Wenjun</au><au>Ye, Bing</au><au>Zhang, Li</au><au>Zhou, Hao</au><au>Guo, Wei</au><au>Wang, Qudong</au><au>Li, Wenzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-08-26</date><risdate>2015</risdate><volume>642</volume><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.06.079</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-08, Vol.642, p.49-56 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718962754 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Closed die forging Cyclic closed-die forging (CCDF) Evolution Forging Grain refinement Magnesium Magnesium matrix nanocomposite Mechanical properties Microstructure Nanoparticle distribution Silicon carbide Ultimate tensile strength |
title | Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20and%20mechanical%20properties%20of%20SiC%20nanoparticles%20reinforced%20magnesium%20matrix%20composite%20processed%20by%20cyclic%20closed-die%20forging&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Liao,%20Wenjun&rft.date=2015-08-26&rft.volume=642&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.06.079&rft_dat=%3Cproquest_cross%3E1718962754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718962754&rft_id=info:pmid/&rft_els_id=S0921509315301337&rfr_iscdi=true |