Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging

Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-08, Vol.642, p.49-56
Hauptverfasser: Liao, Wenjun, Ye, Bing, Zhang, Li, Zhou, Hao, Guo, Wei, Wang, Qudong, Li, Wenzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 49
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 642
creator Liao, Wenjun
Ye, Bing
Zhang, Li
Zhou, Hao
Guo, Wei
Wang, Qudong
Li, Wenzhen
description Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.
doi_str_mv 10.1016/j.msea.2015.06.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718962754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315301337</els_id><sourcerecordid>1718962754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</originalsourceid><addsrcrecordid>eNp9UcuO1DAQtBBIDAs_wMlHLgl2PHlY4oJGsCAt4gCcLafdGXqU2MF2Vsx_8ME4Gs6culWqKnVXMfZailoK2b291EtCWzdCtrXoatHrJ-wgh15VR626p-wgdCOrVmj1nL1I6SKEkEfRHtifLwQxpBw3yFtEjo9h3jIFz613fEH4aT2Bnfkaw4oxEyYeJv6NTtxbH1ZbIJgLGJH8FCJgUdmzx0TbUrYc6TeHsKwhUcbdBTClQhqvHK4wE3CYQwEqR8iLwZn8-SV7Ntk54at_8479-Pjh--lT9fD1_vPp_UMFSqlcubbR4HqhJjkMTo0SjziglCigAz06Z3EUYpwmhUqoFifd9T06aMZGaZhA3bE3N99y1q8NUzYLJcB5th7Dlozs5aC7pm-PhdrcqHtaKeJk1kiLjVcjhdkrMBezV2D2CozoTKmgiN7dRFieeCSMJgGhLxlRRMjGBfqf_C-52pWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718962754</pqid></control><display><type>article</type><title>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liao, Wenjun ; Ye, Bing ; Zhang, Li ; Zhou, Hao ; Guo, Wei ; Wang, Qudong ; Li, Wenzhen</creator><creatorcontrib>Liao, Wenjun ; Ye, Bing ; Zhang, Li ; Zhou, Hao ; Guo, Wei ; Wang, Qudong ; Li, Wenzhen</creatorcontrib><description>Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.06.079</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Closed die forging ; Cyclic closed-die forging (CCDF) ; Evolution ; Forging ; Grain refinement ; Magnesium ; Magnesium matrix nanocomposite ; Mechanical properties ; Microstructure ; Nanoparticle distribution ; Silicon carbide ; Ultimate tensile strength</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2015-08, Vol.642, p.49-56</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</citedby><cites>FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509315301337$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Liao, Wenjun</creatorcontrib><creatorcontrib>Ye, Bing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Qudong</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><title>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.</description><subject>Closed die forging</subject><subject>Cyclic closed-die forging (CCDF)</subject><subject>Evolution</subject><subject>Forging</subject><subject>Grain refinement</subject><subject>Magnesium</subject><subject>Magnesium matrix nanocomposite</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Nanoparticle distribution</subject><subject>Silicon carbide</subject><subject>Ultimate tensile strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UcuO1DAQtBBIDAs_wMlHLgl2PHlY4oJGsCAt4gCcLafdGXqU2MF2Vsx_8ME4Gs6culWqKnVXMfZailoK2b291EtCWzdCtrXoatHrJ-wgh15VR626p-wgdCOrVmj1nL1I6SKEkEfRHtifLwQxpBw3yFtEjo9h3jIFz613fEH4aT2Bnfkaw4oxEyYeJv6NTtxbH1ZbIJgLGJH8FCJgUdmzx0TbUrYc6TeHsKwhUcbdBTClQhqvHK4wE3CYQwEqR8iLwZn8-SV7Ntk54at_8479-Pjh--lT9fD1_vPp_UMFSqlcubbR4HqhJjkMTo0SjziglCigAz06Z3EUYpwmhUqoFifd9T06aMZGaZhA3bE3N99y1q8NUzYLJcB5th7Dlozs5aC7pm-PhdrcqHtaKeJk1kiLjVcjhdkrMBezV2D2CozoTKmgiN7dRFieeCSMJgGhLxlRRMjGBfqf_C-52pWg</recordid><startdate>20150826</startdate><enddate>20150826</enddate><creator>Liao, Wenjun</creator><creator>Ye, Bing</creator><creator>Zhang, Li</creator><creator>Zhou, Hao</creator><creator>Guo, Wei</creator><creator>Wang, Qudong</creator><creator>Li, Wenzhen</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150826</creationdate><title>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</title><author>Liao, Wenjun ; Ye, Bing ; Zhang, Li ; Zhou, Hao ; Guo, Wei ; Wang, Qudong ; Li, Wenzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d529cd703f188d3b1e4e8e11e0c6c9bddaeb00bff3e3035ef9677edc2b239cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Closed die forging</topic><topic>Cyclic closed-die forging (CCDF)</topic><topic>Evolution</topic><topic>Forging</topic><topic>Grain refinement</topic><topic>Magnesium</topic><topic>Magnesium matrix nanocomposite</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Nanoparticle distribution</topic><topic>Silicon carbide</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Wenjun</creatorcontrib><creatorcontrib>Ye, Bing</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Qudong</creatorcontrib><creatorcontrib>Li, Wenzhen</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Wenjun</au><au>Ye, Bing</au><au>Zhang, Li</au><au>Zhou, Hao</au><au>Guo, Wei</au><au>Wang, Qudong</au><au>Li, Wenzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-08-26</date><risdate>2015</risdate><volume>642</volume><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Magnesium composites containing different amounts of SiC nanoparticles were processed by a two-step cyclic closed-die forging (CCDF), which was carried out at 400°C for 3 passes (1st-CCDF) and further at 300°C for 2 passes (2nd-CCDF). Microstructure evolution and mechanical properties of the composites were investigated. After processing, the average grain size is significantly refined to ~2.5μm, and the morphology exhibits a flow-lined feature. The β-Mg17Al12 phases in the as-cast alloy dissolve completely after 1st-CCDF, and then precipitate out with an average size of ~650nm during 2nd-CCDF. After CCDF, the as-cast SiC clusters are uniformly dispersed as separate particles, and the yield strength and ultimate strength of the composites reach 258MPa and 365MPa, respectively. The ductility of the composites is enhanced after 1st-CCDF but decreased after 2nd-CCDF, which is in accordance with the observed fracture surfaces. From the perspective of strength and ductility, the optimal content of SiC is 0.5wt%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.06.079</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-08, Vol.642, p.49-56
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1718962754
source Elsevier ScienceDirect Journals Complete
subjects Closed die forging
Cyclic closed-die forging (CCDF)
Evolution
Forging
Grain refinement
Magnesium
Magnesium matrix nanocomposite
Mechanical properties
Microstructure
Nanoparticle distribution
Silicon carbide
Ultimate tensile strength
title Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A11%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20evolution%20and%20mechanical%20properties%20of%20SiC%20nanoparticles%20reinforced%20magnesium%20matrix%20composite%20processed%20by%20cyclic%20closed-die%20forging&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Liao,%20Wenjun&rft.date=2015-08-26&rft.volume=642&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.06.079&rft_dat=%3Cproquest_cross%3E1718962754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718962754&rft_id=info:pmid/&rft_els_id=S0921509315301337&rfr_iscdi=true