Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group

A bstract The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential ope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2015-06, Vol.2015 (6), p.1-36, Article 10
Hauptverfasser: Matone, Marco, Pasti, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 6
container_start_page 1
container_title The journal of high energy physics
container_volume 2015
creator Matone, Marco
Pasti, Paolo
description A bstract The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl 2 (ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite . Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.
doi_str_mv 10.1007/JHEP06(2015)010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718960690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3705459651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-743fdb58bea0f9b6e2dc78e855c522ad580b5275521a45b83ca5f077fb08a1e13</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYsouK6evRa8rGDdSdu06VFkdZUFRRRvhrRN1ixpUpN2Yf31ptTDIniaYeZ7b4YXBOcIrhFAPn9cLp4hm8WA8CUgOAgmCOIiImleHO71x8GJcxvwFCpgEny8S-WMDpUxrQt98yJ5w7QOXW8Fq7i7ClfS9FupFA-7T27sLmS6DiuzZVYy3clv1kmvM2JY-7kWxjZMhWtr-vY0OBJMOX72W6fB293i9XYZrZ7uH25vVlGVkLSL8jQRdYlJyRmIosx4XFc54QTjCscxqzGBEsc5xjFiKS5JUjEsIM9FCYQhjpJpMBt9W2u-eu462khXcaWY5qZ3FOWIFBlkBXj04g-6Mb3V_juKMpKBP1IMhvORqqxxznJBWysbZncUAR3ypmPedMib-ry9AkaF86Rec7vn-4_kBwsbgpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686055291</pqid></control><display><type>article</type><title>Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><creator>Matone, Marco ; Pasti, Paolo</creator><creatorcontrib>Matone, Marco ; Pasti, Paolo</creatorcontrib><description>A bstract The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl 2 (ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite . Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP06(2015)010</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Derivatives ; Elementary Particles ; Exact solutions ; High energy physics ; Mathematical analysis ; Operators ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Representations ; Riemann surfaces ; String Theory ; Transformations ; Translations</subject><ispartof>The journal of high energy physics, 2015-06, Vol.2015 (6), p.1-36, Article 10</ispartof><rights>The Author(s) 2015</rights><rights>SISSA, Trieste, Italy 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-743fdb58bea0f9b6e2dc78e855c522ad580b5275521a45b83ca5f077fb08a1e13</citedby><cites>FETCH-LOGICAL-c384t-743fdb58bea0f9b6e2dc78e855c522ad580b5275521a45b83ca5f077fb08a1e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP06(2015)010$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP06(2015)010$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Matone, Marco</creatorcontrib><creatorcontrib>Pasti, Paolo</creatorcontrib><title>Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl 2 (ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite . Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.</description><subject>Classical and Quantum Gravitation</subject><subject>Derivatives</subject><subject>Elementary Particles</subject><subject>Exact solutions</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Representations</subject><subject>Riemann surfaces</subject><subject>String Theory</subject><subject>Transformations</subject><subject>Translations</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kEFLxDAQhYsouK6evRa8rGDdSdu06VFkdZUFRRRvhrRN1ixpUpN2Yf31ptTDIniaYeZ7b4YXBOcIrhFAPn9cLp4hm8WA8CUgOAgmCOIiImleHO71x8GJcxvwFCpgEny8S-WMDpUxrQt98yJ5w7QOXW8Fq7i7ClfS9FupFA-7T27sLmS6DiuzZVYy3clv1kmvM2JY-7kWxjZMhWtr-vY0OBJMOX72W6fB293i9XYZrZ7uH25vVlGVkLSL8jQRdYlJyRmIosx4XFc54QTjCscxqzGBEsc5xjFiKS5JUjEsIM9FCYQhjpJpMBt9W2u-eu462khXcaWY5qZ3FOWIFBlkBXj04g-6Mb3V_juKMpKBP1IMhvORqqxxznJBWysbZncUAR3ypmPedMib-ry9AkaF86Rec7vn-4_kBwsbgpQ</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Matone, Marco</creator><creator>Pasti, Paolo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150601</creationdate><title>Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group</title><author>Matone, Marco ; Pasti, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-743fdb58bea0f9b6e2dc78e855c522ad580b5275521a45b83ca5f077fb08a1e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Derivatives</topic><topic>Elementary Particles</topic><topic>Exact solutions</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Representations</topic><topic>Riemann surfaces</topic><topic>String Theory</topic><topic>Transformations</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matone, Marco</creatorcontrib><creatorcontrib>Pasti, Paolo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matone, Marco</au><au>Pasti, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>2015</volume><issue>6</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><artnum>10</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract The covariantization procedure is usually referred to the translation operator, that is the derivative. Here we introduce a general method to covariantize arbitrary differential operators, such as the ones defining the fundamental group of a given manifold. We focus on the differential operators representing the sl 2 (ℝ) generators, which in turn, generate, by exponentiation, the two-dimensional conformal transformations. A key point of our construction is the recent result on the closed forms of the Baker-Campbell-Hausdorff formula. In particular, our covariantization receipt is quite general. This has a deep consequence since it means that the covariantization of the conformal group is always definite . Our covariantization receipt is quite general and apply in general situations, including AdS/CFT. Here we focus on the projective unitary representations of the fundamental group of a Riemann surface, which may include elliptic points and punctures, introduced in the framework of noncommutative Riemann surfaces. It turns out that the covariantized conformal operators are built in terms of Wilson loops around Poincaré geodesics, implying a deep relationship between gauge theories on Riemann surfaces and Liouville theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP06(2015)010</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2015-06, Vol.2015 (6), p.1-36, Article 10
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1718960690
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection
subjects Classical and Quantum Gravitation
Derivatives
Elementary Particles
Exact solutions
High energy physics
Mathematical analysis
Operators
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Representations
Riemann surfaces
String Theory
Transformations
Translations
title Wilson loops on Riemann surfaces, Liouville theory and covariantization of the conformal group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wilson%20loops%20on%20Riemann%20surfaces,%20Liouville%20theory%20and%20covariantization%20of%20the%20conformal%20group&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Matone,%20Marco&rft.date=2015-06-01&rft.volume=2015&rft.issue=6&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.artnum=10&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP06(2015)010&rft_dat=%3Cproquest_cross%3E3705459651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686055291&rft_id=info:pmid/&rfr_iscdi=true