Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application

In the present work, hydrophobic modification of polyvinyl chloride (PVC) was performed with the introduction of ethyl acrylate (EA) monomer onto the polymer backbone, by free radical graft copolymerization. Membranes from polyvinyl chloride and grafted PVC solutions were prepared via immersion prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2015-10, Vol.373, p.58-70
Hauptverfasser: Tooma, Manal A., Najim, Tariq S., Alsalhy, Qusay F., Marino, Tiziana, Criscuoli, Alessandra, Giorno, Lidietta, Figoli, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 58
container_title Desalination
container_volume 373
creator Tooma, Manal A.
Najim, Tariq S.
Alsalhy, Qusay F.
Marino, Tiziana
Criscuoli, Alessandra
Giorno, Lidietta
Figoli, Alberto
description In the present work, hydrophobic modification of polyvinyl chloride (PVC) was performed with the introduction of ethyl acrylate (EA) monomer onto the polymer backbone, by free radical graft copolymerization. Membranes from polyvinyl chloride and grafted PVC solutions were prepared via immersion precipitation process for vacuum membrane distillation (VMD) application. The success of EA grafting onto PVC was confirmed by Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The membranes were characterized by scanning electron microscopy (SEM) analysis contact angle, pore size and porosity measurements. FTIR data showed that the PEA-g-PVC displayed new absorption peaks, indicating the introduction of the EA ester group on PVC. A significant difference between the spectrum of the PVC and PEA-g-PVC in the peak of chlorine and carbon was observed by using EDX analysis. The EA grafting onto PVC could affect the structural morphology of the PVC-g-PEA membranes, and increase the porosity, largest pore size and contact angle of the prepared membranes, whereas the membrane thickness is reduced. According to the results of VMD process on pure water, the permeate flux of the modified membrane was improved by about 15 times compared to the unmodified PVC membrane. The highest permeate flux of the modified membrane was about 37.5kg/m2h at 60°C of feed temperature and 2mbar of vacuum pressure. [Display omitted] •Membrane modified by introduction of EA onto the PVC backbone, by free radical graft copolymerization•Improved the porosity and contact angle of the modified membrane•Highly porous membrane with largest pore size of 0.3μm•Permeate flux of the modified membrane was improved by about 15 times.•Higher permeate flux of the modified membrane of about 37.5 (kg/m2h)
doi_str_mv 10.1016/j.desal.2015.07.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718958821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916415300163</els_id><sourcerecordid>1705069760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-2d74c33a17d8e2be4cbbfac643c2b47f7fd2287782b412b886e40bb1b0b7fd3b3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwBWyybBcJfjV2FyxQeUogWABby4-JcJXEwU4r9e8JpBI7xGo0M_dezRyEzgkuCCblxbpwkHRdUEwWBRYFxvIATYgULOe85IdogjEh-ZKU_BidpLQeWrpkbILcU3C-8lb3PrRZqLIu1Lutb3d1Zj_qEL2DbPbyvppnDTQm6hayKsRsq-1m0_zOnE-9r-sxZfb-dD3PdNfV-9xTdFTpOsHZvk7R2-3N6-o-f3y-e1hdPeaW47LPqRPcMqaJcBKoAW6NqbQtObPUcFGJylEqhZBDR6iRsgSOjSEGm2HFDJui2ZjbxfC5gdSrxicLw10thE1SRBC5XEhJyT-keIHLpSjxIGWj1MaQUoRKddE3Ou4Uweobv1qrH_zqG7_CQg34B9fl6ILh4a2HqJL10FpwPoLtlQv-T_8XTHuPoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705069760</pqid></control><display><type>article</type><title>Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application</title><source>Elsevier ScienceDirect Journals</source><creator>Tooma, Manal A. ; Najim, Tariq S. ; Alsalhy, Qusay F. ; Marino, Tiziana ; Criscuoli, Alessandra ; Giorno, Lidietta ; Figoli, Alberto</creator><creatorcontrib>Tooma, Manal A. ; Najim, Tariq S. ; Alsalhy, Qusay F. ; Marino, Tiziana ; Criscuoli, Alessandra ; Giorno, Lidietta ; Figoli, Alberto</creatorcontrib><description>In the present work, hydrophobic modification of polyvinyl chloride (PVC) was performed with the introduction of ethyl acrylate (EA) monomer onto the polymer backbone, by free radical graft copolymerization. Membranes from polyvinyl chloride and grafted PVC solutions were prepared via immersion precipitation process for vacuum membrane distillation (VMD) application. The success of EA grafting onto PVC was confirmed by Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The membranes were characterized by scanning electron microscopy (SEM) analysis contact angle, pore size and porosity measurements. FTIR data showed that the PEA-g-PVC displayed new absorption peaks, indicating the introduction of the EA ester group on PVC. A significant difference between the spectrum of the PVC and PEA-g-PVC in the peak of chlorine and carbon was observed by using EDX analysis. The EA grafting onto PVC could affect the structural morphology of the PVC-g-PEA membranes, and increase the porosity, largest pore size and contact angle of the prepared membranes, whereas the membrane thickness is reduced. According to the results of VMD process on pure water, the permeate flux of the modified membrane was improved by about 15 times compared to the unmodified PVC membrane. The highest permeate flux of the modified membrane was about 37.5kg/m2h at 60°C of feed temperature and 2mbar of vacuum pressure. [Display omitted] •Membrane modified by introduction of EA onto the PVC backbone, by free radical graft copolymerization•Improved the porosity and contact angle of the modified membrane•Highly porous membrane with largest pore size of 0.3μm•Permeate flux of the modified membrane was improved by about 15 times.•Higher permeate flux of the modified membrane of about 37.5 (kg/m2h)</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2015.07.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Contact angle ; Flat-sheet membrane ; Flux ; Grafted copolymer ; Grafting ; Membrane morphology ; Membranes ; Polyvinyl chlorides ; Pore size ; Porosity ; PVC modification ; Spectroscopy ; VMD</subject><ispartof>Desalination, 2015-10, Vol.373, p.58-70</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-2d74c33a17d8e2be4cbbfac643c2b47f7fd2287782b412b886e40bb1b0b7fd3b3</citedby><cites>FETCH-LOGICAL-c406t-2d74c33a17d8e2be4cbbfac643c2b47f7fd2287782b412b886e40bb1b0b7fd3b3</cites><orcidid>0000-0002-0495-1300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0011916415300163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Tooma, Manal A.</creatorcontrib><creatorcontrib>Najim, Tariq S.</creatorcontrib><creatorcontrib>Alsalhy, Qusay F.</creatorcontrib><creatorcontrib>Marino, Tiziana</creatorcontrib><creatorcontrib>Criscuoli, Alessandra</creatorcontrib><creatorcontrib>Giorno, Lidietta</creatorcontrib><creatorcontrib>Figoli, Alberto</creatorcontrib><title>Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application</title><title>Desalination</title><description>In the present work, hydrophobic modification of polyvinyl chloride (PVC) was performed with the introduction of ethyl acrylate (EA) monomer onto the polymer backbone, by free radical graft copolymerization. Membranes from polyvinyl chloride and grafted PVC solutions were prepared via immersion precipitation process for vacuum membrane distillation (VMD) application. The success of EA grafting onto PVC was confirmed by Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The membranes were characterized by scanning electron microscopy (SEM) analysis contact angle, pore size and porosity measurements. FTIR data showed that the PEA-g-PVC displayed new absorption peaks, indicating the introduction of the EA ester group on PVC. A significant difference between the spectrum of the PVC and PEA-g-PVC in the peak of chlorine and carbon was observed by using EDX analysis. The EA grafting onto PVC could affect the structural morphology of the PVC-g-PEA membranes, and increase the porosity, largest pore size and contact angle of the prepared membranes, whereas the membrane thickness is reduced. According to the results of VMD process on pure water, the permeate flux of the modified membrane was improved by about 15 times compared to the unmodified PVC membrane. The highest permeate flux of the modified membrane was about 37.5kg/m2h at 60°C of feed temperature and 2mbar of vacuum pressure. [Display omitted] •Membrane modified by introduction of EA onto the PVC backbone, by free radical graft copolymerization•Improved the porosity and contact angle of the modified membrane•Highly porous membrane with largest pore size of 0.3μm•Permeate flux of the modified membrane was improved by about 15 times.•Higher permeate flux of the modified membrane of about 37.5 (kg/m2h)</description><subject>Contact angle</subject><subject>Flat-sheet membrane</subject><subject>Flux</subject><subject>Grafted copolymer</subject><subject>Grafting</subject><subject>Membrane morphology</subject><subject>Membranes</subject><subject>Polyvinyl chlorides</subject><subject>Pore size</subject><subject>Porosity</subject><subject>PVC modification</subject><subject>Spectroscopy</subject><subject>VMD</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwBWyybBcJfjV2FyxQeUogWABby4-JcJXEwU4r9e8JpBI7xGo0M_dezRyEzgkuCCblxbpwkHRdUEwWBRYFxvIATYgULOe85IdogjEh-ZKU_BidpLQeWrpkbILcU3C-8lb3PrRZqLIu1Lutb3d1Zj_qEL2DbPbyvppnDTQm6hayKsRsq-1m0_zOnE-9r-sxZfb-dD3PdNfV-9xTdFTpOsHZvk7R2-3N6-o-f3y-e1hdPeaW47LPqRPcMqaJcBKoAW6NqbQtObPUcFGJylEqhZBDR6iRsgSOjSEGm2HFDJui2ZjbxfC5gdSrxicLw10thE1SRBC5XEhJyT-keIHLpSjxIGWj1MaQUoRKddE3Ou4Uweobv1qrH_zqG7_CQg34B9fl6ILh4a2HqJL10FpwPoLtlQv-T_8XTHuPoA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Tooma, Manal A.</creator><creator>Najim, Tariq S.</creator><creator>Alsalhy, Qusay F.</creator><creator>Marino, Tiziana</creator><creator>Criscuoli, Alessandra</creator><creator>Giorno, Lidietta</creator><creator>Figoli, Alberto</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><scope>7SR</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0495-1300</orcidid></search><sort><creationdate>20151001</creationdate><title>Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application</title><author>Tooma, Manal A. ; Najim, Tariq S. ; Alsalhy, Qusay F. ; Marino, Tiziana ; Criscuoli, Alessandra ; Giorno, Lidietta ; Figoli, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-2d74c33a17d8e2be4cbbfac643c2b47f7fd2287782b412b886e40bb1b0b7fd3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Contact angle</topic><topic>Flat-sheet membrane</topic><topic>Flux</topic><topic>Grafted copolymer</topic><topic>Grafting</topic><topic>Membrane morphology</topic><topic>Membranes</topic><topic>Polyvinyl chlorides</topic><topic>Pore size</topic><topic>Porosity</topic><topic>PVC modification</topic><topic>Spectroscopy</topic><topic>VMD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tooma, Manal A.</creatorcontrib><creatorcontrib>Najim, Tariq S.</creatorcontrib><creatorcontrib>Alsalhy, Qusay F.</creatorcontrib><creatorcontrib>Marino, Tiziana</creatorcontrib><creatorcontrib>Criscuoli, Alessandra</creatorcontrib><creatorcontrib>Giorno, Lidietta</creatorcontrib><creatorcontrib>Figoli, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tooma, Manal A.</au><au>Najim, Tariq S.</au><au>Alsalhy, Qusay F.</au><au>Marino, Tiziana</au><au>Criscuoli, Alessandra</au><au>Giorno, Lidietta</au><au>Figoli, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application</atitle><jtitle>Desalination</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>373</volume><spage>58</spage><epage>70</epage><pages>58-70</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><abstract>In the present work, hydrophobic modification of polyvinyl chloride (PVC) was performed with the introduction of ethyl acrylate (EA) monomer onto the polymer backbone, by free radical graft copolymerization. Membranes from polyvinyl chloride and grafted PVC solutions were prepared via immersion precipitation process for vacuum membrane distillation (VMD) application. The success of EA grafting onto PVC was confirmed by Fourier-transform infrared (FTIR) spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The membranes were characterized by scanning electron microscopy (SEM) analysis contact angle, pore size and porosity measurements. FTIR data showed that the PEA-g-PVC displayed new absorption peaks, indicating the introduction of the EA ester group on PVC. A significant difference between the spectrum of the PVC and PEA-g-PVC in the peak of chlorine and carbon was observed by using EDX analysis. The EA grafting onto PVC could affect the structural morphology of the PVC-g-PEA membranes, and increase the porosity, largest pore size and contact angle of the prepared membranes, whereas the membrane thickness is reduced. According to the results of VMD process on pure water, the permeate flux of the modified membrane was improved by about 15 times compared to the unmodified PVC membrane. The highest permeate flux of the modified membrane was about 37.5kg/m2h at 60°C of feed temperature and 2mbar of vacuum pressure. [Display omitted] •Membrane modified by introduction of EA onto the PVC backbone, by free radical graft copolymerization•Improved the porosity and contact angle of the modified membrane•Highly porous membrane with largest pore size of 0.3μm•Permeate flux of the modified membrane was improved by about 15 times.•Higher permeate flux of the modified membrane of about 37.5 (kg/m2h)</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2015.07.008</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0495-1300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2015-10, Vol.373, p.58-70
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_1718958821
source Elsevier ScienceDirect Journals
subjects Contact angle
Flat-sheet membrane
Flux
Grafted copolymer
Grafting
Membrane morphology
Membranes
Polyvinyl chlorides
Pore size
Porosity
PVC modification
Spectroscopy
VMD
title Modification of polyvinyl chloride (PVC) membrane for vacuum membrane distillation (VMD) application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A51%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20polyvinyl%20chloride%20(PVC)%20membrane%20for%20vacuum%20membrane%20distillation%20(VMD)%20application&rft.jtitle=Desalination&rft.au=Tooma,%20Manal%20A.&rft.date=2015-10-01&rft.volume=373&rft.spage=58&rft.epage=70&rft.pages=58-70&rft.issn=0011-9164&rft.eissn=1873-4464&rft_id=info:doi/10.1016/j.desal.2015.07.008&rft_dat=%3Cproquest_cross%3E1705069760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1705069760&rft_id=info:pmid/&rft_els_id=S0011916415300163&rfr_iscdi=true