Nearest Neighbor-Based Classification of Uncertain Data
This work deals with the problem of classifying uncertain data. With this aim we introduce the Uncertain Nearest Neighbor (UNN) rule, which represents the generalization of the deterministic nearest neighbor rule to the case in which uncertain objects are available. The UNN rule relies on the concep...
Gespeichert in:
Veröffentlicht in: | ACM transactions on knowledge discovery from data 2013-03, Vol.7 (1), p.1-35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work deals with the problem of classifying uncertain data. With this aim we introduce the Uncertain Nearest Neighbor (UNN) rule, which represents the generalization of the deterministic nearest neighbor rule to the case in which uncertain objects are available. The UNN rule relies on the concept of nearest neighbor class, rather than on that of nearest neighbor object. The nearest neighbor class of a test object is the class that maximizes the probability of providing its nearest neighbor. The evidence is that the former concept is much more powerful than the latter in the presence of uncertainty, in that it correctly models the right semantics of the nearest neighbor decision rule when applied to the uncertain scenario. An effective and efficient algorithm to perform uncertain nearest neighbor classification of a generic (un)certain test object is designed, based on properties that greatly reduce the temporal cost associated with nearest neighbor class probability computation. Experimental results are presented, showing that the UNN rule is effective and efficient in classifying uncertain data. |
---|---|
ISSN: | 1556-4681 1556-472X |
DOI: | 10.1145/2435209.2435210 |