A Non-linear Manifold Strategy for SHM Approaches
In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a se...
Gespeichert in:
Veröffentlicht in: | Strain 2015-08, Vol.51 (4), p.324-331 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 4 |
container_start_page | 324 |
container_title | Strain |
container_volume | 51 |
creator | Dervilis, N. Antoniadou, I. Cross, E. J. Worden, K. |
description | In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM.
The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying. |
doi_str_mv | 10.1111/str.12143 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718948589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718948589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</originalsourceid><addsrcrecordid>eNp10EFPwjAUB_DGaCKiB7_BEi96GPSt7dodCSqYMDSCeGxK1-pwbNiOKN_e6dSDib28y-__XvNH6BRwD5rX97XrQQSU7KEOUM5CIJjtow7GJAkjwOQQHXm_whh4QnkHwSCYVmVY5KVRLkhVmduqyIJZ7VRtnnaBrVwwG6fBYLNxldLPxh-jA6sKb06-Zxc9XF_Nh-Nwcju6GQ4moaackFAbpdmSMWZoHAudWUITaxUWnNssWjIAYZXmRCjQWaRpZIHopdVJRoVhipMuOm_3Nodft8bXcp17bYpClabaegkcREIFE0lDz_7QVbV1ZfM7CXES41gwHjXqolXaVd47Y-XG5WvldhKw_CxPNuXJr_Ia22_tW16Y3f9Qzub3P4mwTeS-Nu-_CeVeZMwJZ_JxOpJ3UbrAl4tUTsgHO_l-JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696068572</pqid></control><display><type>article</type><title>A Non-linear Manifold Strategy for SHM Approaches</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dervilis, N. ; Antoniadou, I. ; Cross, E. J. ; Worden, K.</creator><creatorcontrib>Dervilis, N. ; Antoniadou, I. ; Cross, E. J. ; Worden, K.</creatorcontrib><description>In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM.
The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.</description><identifier>ISSN: 0039-2103</identifier><identifier>EISSN: 1475-1305</identifier><identifier>DOI: 10.1111/str.12143</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Consumer goods ; Correlation ; Diagnosis ; environmental and operational variations ; Gaussian processes ; Health monitoring (engineering) ; manifold learning ; Manifolds ; Nonlinearity ; pattern recognition ; Regression ; Strategy ; structural health monitoring (SHM)</subject><ispartof>Strain, 2015-08, Vol.51 (4), p.324-331</ispartof><rights>2015 The Authors. published by John Wiley & Sons Ltd</rights><rights>2015 Wiley Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</citedby><cites>FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fstr.12143$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fstr.12143$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Antoniadou, I.</creatorcontrib><creatorcontrib>Cross, E. J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><title>A Non-linear Manifold Strategy for SHM Approaches</title><title>Strain</title><addtitle>Strain</addtitle><description>In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM.
The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.</description><subject>Consumer goods</subject><subject>Correlation</subject><subject>Diagnosis</subject><subject>environmental and operational variations</subject><subject>Gaussian processes</subject><subject>Health monitoring (engineering)</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Nonlinearity</subject><subject>pattern recognition</subject><subject>Regression</subject><subject>Strategy</subject><subject>structural health monitoring (SHM)</subject><issn>0039-2103</issn><issn>1475-1305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10EFPwjAUB_DGaCKiB7_BEi96GPSt7dodCSqYMDSCeGxK1-pwbNiOKN_e6dSDib28y-__XvNH6BRwD5rX97XrQQSU7KEOUM5CIJjtow7GJAkjwOQQHXm_whh4QnkHwSCYVmVY5KVRLkhVmduqyIJZ7VRtnnaBrVwwG6fBYLNxldLPxh-jA6sKb06-Zxc9XF_Nh-Nwcju6GQ4moaackFAbpdmSMWZoHAudWUITaxUWnNssWjIAYZXmRCjQWaRpZIHopdVJRoVhipMuOm_3Nodft8bXcp17bYpClabaegkcREIFE0lDz_7QVbV1ZfM7CXES41gwHjXqolXaVd47Y-XG5WvldhKw_CxPNuXJr_Ia22_tW16Y3f9Qzub3P4mwTeS-Nu-_CeVeZMwJZ_JxOpJ3UbrAl4tUTsgHO_l-JQ</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Dervilis, N.</creator><creator>Antoniadou, I.</creator><creator>Cross, E. J.</creator><creator>Worden, K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201508</creationdate><title>A Non-linear Manifold Strategy for SHM Approaches</title><author>Dervilis, N. ; Antoniadou, I. ; Cross, E. J. ; Worden, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Consumer goods</topic><topic>Correlation</topic><topic>Diagnosis</topic><topic>environmental and operational variations</topic><topic>Gaussian processes</topic><topic>Health monitoring (engineering)</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Nonlinearity</topic><topic>pattern recognition</topic><topic>Regression</topic><topic>Strategy</topic><topic>structural health monitoring (SHM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Antoniadou, I.</creatorcontrib><creatorcontrib>Cross, E. J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Strain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dervilis, N.</au><au>Antoniadou, I.</au><au>Cross, E. J.</au><au>Worden, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-linear Manifold Strategy for SHM Approaches</atitle><jtitle>Strain</jtitle><addtitle>Strain</addtitle><date>2015-08</date><risdate>2015</risdate><volume>51</volume><issue>4</issue><spage>324</spage><epage>331</epage><pages>324-331</pages><issn>0039-2103</issn><eissn>1475-1305</eissn><abstract>In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM.
The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/str.12143</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2103 |
ispartof | Strain, 2015-08, Vol.51 (4), p.324-331 |
issn | 0039-2103 1475-1305 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718948589 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Consumer goods Correlation Diagnosis environmental and operational variations Gaussian processes Health monitoring (engineering) manifold learning Manifolds Nonlinearity pattern recognition Regression Strategy structural health monitoring (SHM) |
title | A Non-linear Manifold Strategy for SHM Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-linear%20Manifold%20Strategy%20for%20SHM%20Approaches&rft.jtitle=Strain&rft.au=Dervilis,%20N.&rft.date=2015-08&rft.volume=51&rft.issue=4&rft.spage=324&rft.epage=331&rft.pages=324-331&rft.issn=0039-2103&rft.eissn=1475-1305&rft_id=info:doi/10.1111/str.12143&rft_dat=%3Cproquest_cross%3E1718948589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696068572&rft_id=info:pmid/&rfr_iscdi=true |