A Non-linear Manifold Strategy for SHM Approaches

In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strain 2015-08, Vol.51 (4), p.324-331
Hauptverfasser: Dervilis, N., Antoniadou, I., Cross, E. J., Worden, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue 4
container_start_page 324
container_title Strain
container_volume 51
creator Dervilis, N.
Antoniadou, I.
Cross, E. J.
Worden, K.
description In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM. The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.
doi_str_mv 10.1111/str.12143
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718948589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718948589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</originalsourceid><addsrcrecordid>eNp10EFPwjAUB_DGaCKiB7_BEi96GPSt7dodCSqYMDSCeGxK1-pwbNiOKN_e6dSDib28y-__XvNH6BRwD5rX97XrQQSU7KEOUM5CIJjtow7GJAkjwOQQHXm_whh4QnkHwSCYVmVY5KVRLkhVmduqyIJZ7VRtnnaBrVwwG6fBYLNxldLPxh-jA6sKb06-Zxc9XF_Nh-Nwcju6GQ4moaackFAbpdmSMWZoHAudWUITaxUWnNssWjIAYZXmRCjQWaRpZIHopdVJRoVhipMuOm_3Nodft8bXcp17bYpClabaegkcREIFE0lDz_7QVbV1ZfM7CXES41gwHjXqolXaVd47Y-XG5WvldhKw_CxPNuXJr_Ia22_tW16Y3f9Qzub3P4mwTeS-Nu-_CeVeZMwJZ_JxOpJ3UbrAl4tUTsgHO_l-JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696068572</pqid></control><display><type>article</type><title>A Non-linear Manifold Strategy for SHM Approaches</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Dervilis, N. ; Antoniadou, I. ; Cross, E. J. ; Worden, K.</creator><creatorcontrib>Dervilis, N. ; Antoniadou, I. ; Cross, E. J. ; Worden, K.</creatorcontrib><description>In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM. The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.</description><identifier>ISSN: 0039-2103</identifier><identifier>EISSN: 1475-1305</identifier><identifier>DOI: 10.1111/str.12143</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Consumer goods ; Correlation ; Diagnosis ; environmental and operational variations ; Gaussian processes ; Health monitoring (engineering) ; manifold learning ; Manifolds ; Nonlinearity ; pattern recognition ; Regression ; Strategy ; structural health monitoring (SHM)</subject><ispartof>Strain, 2015-08, Vol.51 (4), p.324-331</ispartof><rights>2015 The Authors. published by John Wiley &amp; Sons Ltd</rights><rights>2015 Wiley Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</citedby><cites>FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fstr.12143$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fstr.12143$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Antoniadou, I.</creatorcontrib><creatorcontrib>Cross, E. J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><title>A Non-linear Manifold Strategy for SHM Approaches</title><title>Strain</title><addtitle>Strain</addtitle><description>In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM. The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.</description><subject>Consumer goods</subject><subject>Correlation</subject><subject>Diagnosis</subject><subject>environmental and operational variations</subject><subject>Gaussian processes</subject><subject>Health monitoring (engineering)</subject><subject>manifold learning</subject><subject>Manifolds</subject><subject>Nonlinearity</subject><subject>pattern recognition</subject><subject>Regression</subject><subject>Strategy</subject><subject>structural health monitoring (SHM)</subject><issn>0039-2103</issn><issn>1475-1305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10EFPwjAUB_DGaCKiB7_BEi96GPSt7dodCSqYMDSCeGxK1-pwbNiOKN_e6dSDib28y-__XvNH6BRwD5rX97XrQQSU7KEOUM5CIJjtow7GJAkjwOQQHXm_whh4QnkHwSCYVmVY5KVRLkhVmduqyIJZ7VRtnnaBrVwwG6fBYLNxldLPxh-jA6sKb06-Zxc9XF_Nh-Nwcju6GQ4moaackFAbpdmSMWZoHAudWUITaxUWnNssWjIAYZXmRCjQWaRpZIHopdVJRoVhipMuOm_3Nodft8bXcp17bYpClabaegkcREIFE0lDz_7QVbV1ZfM7CXES41gwHjXqolXaVd47Y-XG5WvldhKw_CxPNuXJr_Ia22_tW16Y3f9Qzub3P4mwTeS-Nu-_CeVeZMwJZ_JxOpJ3UbrAl4tUTsgHO_l-JQ</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Dervilis, N.</creator><creator>Antoniadou, I.</creator><creator>Cross, E. J.</creator><creator>Worden, K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201508</creationdate><title>A Non-linear Manifold Strategy for SHM Approaches</title><author>Dervilis, N. ; Antoniadou, I. ; Cross, E. J. ; Worden, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4733-ceac5b555e4668cdf349ffa0877fd2b5118fac738a1cd2c42f13cbfc9d48e5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Consumer goods</topic><topic>Correlation</topic><topic>Diagnosis</topic><topic>environmental and operational variations</topic><topic>Gaussian processes</topic><topic>Health monitoring (engineering)</topic><topic>manifold learning</topic><topic>Manifolds</topic><topic>Nonlinearity</topic><topic>pattern recognition</topic><topic>Regression</topic><topic>Strategy</topic><topic>structural health monitoring (SHM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dervilis, N.</creatorcontrib><creatorcontrib>Antoniadou, I.</creatorcontrib><creatorcontrib>Cross, E. J.</creatorcontrib><creatorcontrib>Worden, K.</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Strain</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dervilis, N.</au><au>Antoniadou, I.</au><au>Cross, E. J.</au><au>Worden, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-linear Manifold Strategy for SHM Approaches</atitle><jtitle>Strain</jtitle><addtitle>Strain</addtitle><date>2015-08</date><risdate>2015</risdate><volume>51</volume><issue>4</issue><spage>324</spage><epage>331</epage><pages>324-331</pages><issn>0039-2103</issn><eissn>1475-1305</eissn><abstract>In the data‐based approach to structural health monitoring (SHM) when novelty detection is utilised as a means of diagnosis, benign operational and environmental variations of the structure can lead to false alarms and mask the presence of damage. The key element of this paper is to demonstrate a series of pattern recognition approaches which investigate complex correlations between the variables and thus potentially shed light on the variations within the data that are of interest for SHM. The non‐linear manifold learning techniques discussed here, like locally linear embedding combined with robust discordance measures like the minimum covariance determinant and regression techniques like Gaussian processes offer a strategy that includes reliable novelty detection analysis but also a method of investigating the space where structural data clusters are lying.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/str.12143</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-2103
ispartof Strain, 2015-08, Vol.51 (4), p.324-331
issn 0039-2103
1475-1305
language eng
recordid cdi_proquest_miscellaneous_1718948589
source Wiley Online Library - AutoHoldings Journals
subjects Consumer goods
Correlation
Diagnosis
environmental and operational variations
Gaussian processes
Health monitoring (engineering)
manifold learning
Manifolds
Nonlinearity
pattern recognition
Regression
Strategy
structural health monitoring (SHM)
title A Non-linear Manifold Strategy for SHM Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-linear%20Manifold%20Strategy%20for%20SHM%20Approaches&rft.jtitle=Strain&rft.au=Dervilis,%20N.&rft.date=2015-08&rft.volume=51&rft.issue=4&rft.spage=324&rft.epage=331&rft.pages=324-331&rft.issn=0039-2103&rft.eissn=1475-1305&rft_id=info:doi/10.1111/str.12143&rft_dat=%3Cproquest_cross%3E1718948589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696068572&rft_id=info:pmid/&rfr_iscdi=true