Path integration for real options
Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path in...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2015-08, Vol.265, p.120-132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | |
container_start_page | 120 |
container_title | Applied mathematics and computation |
container_volume | 265 |
creator | Grillo, Sebastian Blanco, Gerardo Schaerer, Christian E. |
description | Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems. |
doi_str_mv | 10.1016/j.amc.2015.04.111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718943513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300315005731</els_id><sourcerecordid>1718943513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AHd156b1vSZtU1zJ4BcM6ELXIUlfNaVtxqQj-O9tGdeuLg_ueXAPY5cIGQKWN12mB5vlgEUGIkPEI7ZCWfG0KEV9zFYAdZlyAH7KzmLsAKAqUazY1auePhM3TvQR9OT8mLQ-JIF0n_jdcsdzdtLqPtLFX67Z-8P92-Yp3b48Pm_utqnlHKa0RNNYKXOZk-VG1AYNycZw0AIaaDhyWaEBJGkEGF7UtoQ6LwqAVopKEF-z68PfXfBfe4qTGly01Pd6JL-PCiuUteAF8rmKh6oNPsZArdoFN-jwoxDUokN1atahFh0KhJp1zMztgaF5w7ejoKJ1NFpqXCA7qca7f-hfF8tlfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718943513</pqid></control><display><type>article</type><title>Path integration for real options</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grillo, Sebastian ; Blanco, Gerardo ; Schaerer, Christian E.</creator><creatorcontrib>Grillo, Sebastian ; Blanco, Gerardo ; Schaerer, Christian E.</creatorcontrib><description>Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2015.04.111</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>American option ; Computer simulation ; Continuous state ; Control charts ; Decision analysis ; Dynamics ; European option ; Integrals ; Markov process ; Mathematical analysis ; Mathematical models ; Path integration ; Proposals ; Real option</subject><ispartof>Applied mathematics and computation, 2015-08, Vol.265, p.120-132</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</citedby><cites>FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300315005731$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Grillo, Sebastian</creatorcontrib><creatorcontrib>Blanco, Gerardo</creatorcontrib><creatorcontrib>Schaerer, Christian E.</creatorcontrib><title>Path integration for real options</title><title>Applied mathematics and computation</title><description>Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.</description><subject>American option</subject><subject>Computer simulation</subject><subject>Continuous state</subject><subject>Control charts</subject><subject>Decision analysis</subject><subject>Dynamics</subject><subject>European option</subject><subject>Integrals</subject><subject>Markov process</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Path integration</subject><subject>Proposals</subject><subject>Real option</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AHd156b1vSZtU1zJ4BcM6ELXIUlfNaVtxqQj-O9tGdeuLg_ueXAPY5cIGQKWN12mB5vlgEUGIkPEI7ZCWfG0KEV9zFYAdZlyAH7KzmLsAKAqUazY1auePhM3TvQR9OT8mLQ-JIF0n_jdcsdzdtLqPtLFX67Z-8P92-Yp3b48Pm_utqnlHKa0RNNYKXOZk-VG1AYNycZw0AIaaDhyWaEBJGkEGF7UtoQ6LwqAVopKEF-z68PfXfBfe4qTGly01Pd6JL-PCiuUteAF8rmKh6oNPsZArdoFN-jwoxDUokN1atahFh0KhJp1zMztgaF5w7ejoKJ1NFpqXCA7qca7f-hfF8tlfw</recordid><startdate>20150815</startdate><enddate>20150815</enddate><creator>Grillo, Sebastian</creator><creator>Blanco, Gerardo</creator><creator>Schaerer, Christian E.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150815</creationdate><title>Path integration for real options</title><author>Grillo, Sebastian ; Blanco, Gerardo ; Schaerer, Christian E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>American option</topic><topic>Computer simulation</topic><topic>Continuous state</topic><topic>Control charts</topic><topic>Decision analysis</topic><topic>Dynamics</topic><topic>European option</topic><topic>Integrals</topic><topic>Markov process</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Path integration</topic><topic>Proposals</topic><topic>Real option</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grillo, Sebastian</creatorcontrib><creatorcontrib>Blanco, Gerardo</creatorcontrib><creatorcontrib>Schaerer, Christian E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grillo, Sebastian</au><au>Blanco, Gerardo</au><au>Schaerer, Christian E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path integration for real options</atitle><jtitle>Applied mathematics and computation</jtitle><date>2015-08-15</date><risdate>2015</risdate><volume>265</volume><spage>120</spage><epage>132</epage><pages>120-132</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2015.04.111</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2015-08, Vol.265, p.120-132 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718943513 |
source | Elsevier ScienceDirect Journals Complete |
subjects | American option Computer simulation Continuous state Control charts Decision analysis Dynamics European option Integrals Markov process Mathematical analysis Mathematical models Path integration Proposals Real option |
title | Path integration for real options |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20integration%20for%20real%20options&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Grillo,%20Sebastian&rft.date=2015-08-15&rft.volume=265&rft.spage=120&rft.epage=132&rft.pages=120-132&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2015.04.111&rft_dat=%3Cproquest_cross%3E1718943513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718943513&rft_id=info:pmid/&rft_els_id=S0096300315005731&rfr_iscdi=true |