Path integration for real options

Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2015-08, Vol.265, p.120-132
Hauptverfasser: Grillo, Sebastian, Blanco, Gerardo, Schaerer, Christian E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue
container_start_page 120
container_title Applied mathematics and computation
container_volume 265
creator Grillo, Sebastian
Blanco, Gerardo
Schaerer, Christian E.
description Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.
doi_str_mv 10.1016/j.amc.2015.04.111
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718943513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300315005731</els_id><sourcerecordid>1718943513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AHd156b1vSZtU1zJ4BcM6ELXIUlfNaVtxqQj-O9tGdeuLg_ueXAPY5cIGQKWN12mB5vlgEUGIkPEI7ZCWfG0KEV9zFYAdZlyAH7KzmLsAKAqUazY1auePhM3TvQR9OT8mLQ-JIF0n_jdcsdzdtLqPtLFX67Z-8P92-Yp3b48Pm_utqnlHKa0RNNYKXOZk-VG1AYNycZw0AIaaDhyWaEBJGkEGF7UtoQ6LwqAVopKEF-z68PfXfBfe4qTGly01Pd6JL-PCiuUteAF8rmKh6oNPsZArdoFN-jwoxDUokN1atahFh0KhJp1zMztgaF5w7ejoKJ1NFpqXCA7qca7f-hfF8tlfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718943513</pqid></control><display><type>article</type><title>Path integration for real options</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Grillo, Sebastian ; Blanco, Gerardo ; Schaerer, Christian E.</creator><creatorcontrib>Grillo, Sebastian ; Blanco, Gerardo ; Schaerer, Christian E.</creatorcontrib><description>Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2015.04.111</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>American option ; Computer simulation ; Continuous state ; Control charts ; Decision analysis ; Dynamics ; European option ; Integrals ; Markov process ; Mathematical analysis ; Mathematical models ; Path integration ; Proposals ; Real option</subject><ispartof>Applied mathematics and computation, 2015-08, Vol.265, p.120-132</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</citedby><cites>FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300315005731$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Grillo, Sebastian</creatorcontrib><creatorcontrib>Blanco, Gerardo</creatorcontrib><creatorcontrib>Schaerer, Christian E.</creatorcontrib><title>Path integration for real options</title><title>Applied mathematics and computation</title><description>Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.</description><subject>American option</subject><subject>Computer simulation</subject><subject>Continuous state</subject><subject>Control charts</subject><subject>Decision analysis</subject><subject>Dynamics</subject><subject>European option</subject><subject>Integrals</subject><subject>Markov process</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Path integration</subject><subject>Proposals</subject><subject>Real option</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AHd156b1vSZtU1zJ4BcM6ELXIUlfNaVtxqQj-O9tGdeuLg_ueXAPY5cIGQKWN12mB5vlgEUGIkPEI7ZCWfG0KEV9zFYAdZlyAH7KzmLsAKAqUazY1auePhM3TvQR9OT8mLQ-JIF0n_jdcsdzdtLqPtLFX67Z-8P92-Yp3b48Pm_utqnlHKa0RNNYKXOZk-VG1AYNycZw0AIaaDhyWaEBJGkEGF7UtoQ6LwqAVopKEF-z68PfXfBfe4qTGly01Pd6JL-PCiuUteAF8rmKh6oNPsZArdoFN-jwoxDUokN1atahFh0KhJp1zMztgaF5w7ejoKJ1NFpqXCA7qca7f-hfF8tlfw</recordid><startdate>20150815</startdate><enddate>20150815</enddate><creator>Grillo, Sebastian</creator><creator>Blanco, Gerardo</creator><creator>Schaerer, Christian E.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150815</creationdate><title>Path integration for real options</title><author>Grillo, Sebastian ; Blanco, Gerardo ; Schaerer, Christian E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-61bdc88282ec3b49b1be8db30a40d0d313871b01e8b40b359c60925500f8474e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>American option</topic><topic>Computer simulation</topic><topic>Continuous state</topic><topic>Control charts</topic><topic>Decision analysis</topic><topic>Dynamics</topic><topic>European option</topic><topic>Integrals</topic><topic>Markov process</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Path integration</topic><topic>Proposals</topic><topic>Real option</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grillo, Sebastian</creatorcontrib><creatorcontrib>Blanco, Gerardo</creatorcontrib><creatorcontrib>Schaerer, Christian E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grillo, Sebastian</au><au>Blanco, Gerardo</au><au>Schaerer, Christian E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path integration for real options</atitle><jtitle>Applied mathematics and computation</jtitle><date>2015-08-15</date><risdate>2015</risdate><volume>265</volume><spage>120</spage><epage>132</epage><pages>120-132</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>Real options were firstly formulated by using traditional financial option models; however, an investor can confront in practice with exotic dynamics. Nowadays, approaches based on simulations have been gaining relevance for solving complex options. This paper proposes the application of the path integral approach (PI) to multivariate real option problems. We discuss the viability of the proposal by a mathematical analysis of the problem and an application to a case study of control chart decision (CCD). The proposal is compared with the traditional approaches for solving real option problems. The results present the proposal as a competitive alternative for the simulation in low dimensional problems.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2015.04.111</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2015-08, Vol.265, p.120-132
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1718943513
source Elsevier ScienceDirect Journals Complete
subjects American option
Computer simulation
Continuous state
Control charts
Decision analysis
Dynamics
European option
Integrals
Markov process
Mathematical analysis
Mathematical models
Path integration
Proposals
Real option
title Path integration for real options
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A32%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20integration%20for%20real%20options&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Grillo,%20Sebastian&rft.date=2015-08-15&rft.volume=265&rft.spage=120&rft.epage=132&rft.pages=120-132&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2015.04.111&rft_dat=%3Cproquest_cross%3E1718943513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718943513&rft_id=info:pmid/&rft_els_id=S0096300315005731&rfr_iscdi=true