Multivariate Stirling polynomials of the first and second kind

Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2015-12, Vol.338 (12), p.2462-2484
1. Verfasser: Schreiber, Alfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2484
container_issue 12
container_start_page 2462
container_title Discrete mathematics
container_volume 338
creator Schreiber, Alfred
description Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.
doi_str_mv 10.1016/j.disc.2015.06.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718943322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X1500240X</els_id><sourcerecordid>1718943322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNMevez6kuwmWRBBiv-g4kGF3kI2m2jqdlOTtNBvb0o9exoezAxvfghdYqgwYHa9rHoXdUUANxWwCkAcoQkWnJRM4MUxmgBgUlLWLE7RWYxLyDejYoJuXzZDclsVnEqmeEsuDG78LNZ-2I1-5dQQC2-L9GUK60JMhRr7Ihrts3y7sT9HJzZ7zMWfTtHHw_377Kmcvz4-z-7mpaacp1LYtqeUghYCOFdMG2U6TfKDlta2xo2lPYHWtJ2lTHUd7wjVGjiGRtWUNHSKrg696-B_NiYmucp7zTCo0fhNlJhj0daUEpKt5GDVwccYjJXr4FYq7CQGuYcll3IPS-5hSWAyw8qhm0PI5BFbZ4KM2plRm94Fo5Psvfsv_gtTTXLW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718943322</pqid></control><display><type>article</type><title>Multivariate Stirling polynomials of the first and second kind</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schreiber, Alfred</creator><creatorcontrib>Schreiber, Alfred</creatorcontrib><description>Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2015.06.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antipodes ; Bell polynomials ; Combinatorial analysis ; Derivatives ; Faà di Bruno formula ; Functions (mathematics) ; Inverse ; Inversion laws ; Inversions ; Lagrange inversion ; Mathematical analysis ; Multivariate Stirling polynomials ; Polynomials ; Stirling numbers</subject><ispartof>Discrete mathematics, 2015-12, Vol.338 (12), p.2462-2484</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</citedby><cites>FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012365X1500240X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Schreiber, Alfred</creatorcontrib><title>Multivariate Stirling polynomials of the first and second kind</title><title>Discrete mathematics</title><description>Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.</description><subject>Antipodes</subject><subject>Bell polynomials</subject><subject>Combinatorial analysis</subject><subject>Derivatives</subject><subject>Faà di Bruno formula</subject><subject>Functions (mathematics)</subject><subject>Inverse</subject><subject>Inversion laws</subject><subject>Inversions</subject><subject>Lagrange inversion</subject><subject>Mathematical analysis</subject><subject>Multivariate Stirling polynomials</subject><subject>Polynomials</subject><subject>Stirling numbers</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNMevez6kuwmWRBBiv-g4kGF3kI2m2jqdlOTtNBvb0o9exoezAxvfghdYqgwYHa9rHoXdUUANxWwCkAcoQkWnJRM4MUxmgBgUlLWLE7RWYxLyDejYoJuXzZDclsVnEqmeEsuDG78LNZ-2I1-5dQQC2-L9GUK60JMhRr7Ihrts3y7sT9HJzZ7zMWfTtHHw_377Kmcvz4-z-7mpaacp1LYtqeUghYCOFdMG2U6TfKDlta2xo2lPYHWtJ2lTHUd7wjVGjiGRtWUNHSKrg696-B_NiYmucp7zTCo0fhNlJhj0daUEpKt5GDVwccYjJXr4FYq7CQGuYcll3IPS-5hSWAyw8qhm0PI5BFbZ4KM2plRm94Fo5Psvfsv_gtTTXLW</recordid><startdate>20151206</startdate><enddate>20151206</enddate><creator>Schreiber, Alfred</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151206</creationdate><title>Multivariate Stirling polynomials of the first and second kind</title><author>Schreiber, Alfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antipodes</topic><topic>Bell polynomials</topic><topic>Combinatorial analysis</topic><topic>Derivatives</topic><topic>Faà di Bruno formula</topic><topic>Functions (mathematics)</topic><topic>Inverse</topic><topic>Inversion laws</topic><topic>Inversions</topic><topic>Lagrange inversion</topic><topic>Mathematical analysis</topic><topic>Multivariate Stirling polynomials</topic><topic>Polynomials</topic><topic>Stirling numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreiber, Alfred</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schreiber, Alfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Stirling polynomials of the first and second kind</atitle><jtitle>Discrete mathematics</jtitle><date>2015-12-06</date><risdate>2015</risdate><volume>338</volume><issue>12</issue><spage>2462</spage><epage>2484</epage><pages>2462-2484</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2015.06.008</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2015-12, Vol.338 (12), p.2462-2484
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1718943322
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Antipodes
Bell polynomials
Combinatorial analysis
Derivatives
Faà di Bruno formula
Functions (mathematics)
Inverse
Inversion laws
Inversions
Lagrange inversion
Mathematical analysis
Multivariate Stirling polynomials
Polynomials
Stirling numbers
title Multivariate Stirling polynomials of the first and second kind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Stirling%20polynomials%20of%20the%20first%20and%20second%20kind&rft.jtitle=Discrete%20mathematics&rft.au=Schreiber,%20Alfred&rft.date=2015-12-06&rft.volume=338&rft.issue=12&rft.spage=2462&rft.epage=2484&rft.pages=2462-2484&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2015.06.008&rft_dat=%3Cproquest_cross%3E1718943322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718943322&rft_id=info:pmid/&rft_els_id=S0012365X1500240X&rfr_iscdi=true