Multivariate Stirling polynomials of the first and second kind
Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2015-12, Vol.338 (12), p.2462-2484 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2484 |
---|---|
container_issue | 12 |
container_start_page | 2462 |
container_title | Discrete mathematics |
container_volume | 338 |
creator | Schreiber, Alfred |
description | Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa. |
doi_str_mv | 10.1016/j.disc.2015.06.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718943322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X1500240X</els_id><sourcerecordid>1718943322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNMevez6kuwmWRBBiv-g4kGF3kI2m2jqdlOTtNBvb0o9exoezAxvfghdYqgwYHa9rHoXdUUANxWwCkAcoQkWnJRM4MUxmgBgUlLWLE7RWYxLyDejYoJuXzZDclsVnEqmeEsuDG78LNZ-2I1-5dQQC2-L9GUK60JMhRr7Ihrts3y7sT9HJzZ7zMWfTtHHw_377Kmcvz4-z-7mpaacp1LYtqeUghYCOFdMG2U6TfKDlta2xo2lPYHWtJ2lTHUd7wjVGjiGRtWUNHSKrg696-B_NiYmucp7zTCo0fhNlJhj0daUEpKt5GDVwccYjJXr4FYq7CQGuYcll3IPS-5hSWAyw8qhm0PI5BFbZ4KM2plRm94Fo5Psvfsv_gtTTXLW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718943322</pqid></control><display><type>article</type><title>Multivariate Stirling polynomials of the first and second kind</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schreiber, Alfred</creator><creatorcontrib>Schreiber, Alfred</creatorcontrib><description>Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2015.06.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Antipodes ; Bell polynomials ; Combinatorial analysis ; Derivatives ; Faà di Bruno formula ; Functions (mathematics) ; Inverse ; Inversion laws ; Inversions ; Lagrange inversion ; Mathematical analysis ; Multivariate Stirling polynomials ; Polynomials ; Stirling numbers</subject><ispartof>Discrete mathematics, 2015-12, Vol.338 (12), p.2462-2484</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</citedby><cites>FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0012365X1500240X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Schreiber, Alfred</creatorcontrib><title>Multivariate Stirling polynomials of the first and second kind</title><title>Discrete mathematics</title><description>Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.</description><subject>Antipodes</subject><subject>Bell polynomials</subject><subject>Combinatorial analysis</subject><subject>Derivatives</subject><subject>Faà di Bruno formula</subject><subject>Functions (mathematics)</subject><subject>Inverse</subject><subject>Inversion laws</subject><subject>Inversions</subject><subject>Lagrange inversion</subject><subject>Mathematical analysis</subject><subject>Multivariate Stirling polynomials</subject><subject>Polynomials</subject><subject>Stirling numbers</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNMevez6kuwmWRBBiv-g4kGF3kI2m2jqdlOTtNBvb0o9exoezAxvfghdYqgwYHa9rHoXdUUANxWwCkAcoQkWnJRM4MUxmgBgUlLWLE7RWYxLyDejYoJuXzZDclsVnEqmeEsuDG78LNZ-2I1-5dQQC2-L9GUK60JMhRr7Ihrts3y7sT9HJzZ7zMWfTtHHw_377Kmcvz4-z-7mpaacp1LYtqeUghYCOFdMG2U6TfKDlta2xo2lPYHWtJ2lTHUd7wjVGjiGRtWUNHSKrg696-B_NiYmucp7zTCo0fhNlJhj0daUEpKt5GDVwccYjJXr4FYq7CQGuYcll3IPS-5hSWAyw8qhm0PI5BFbZ4KM2plRm94Fo5Psvfsv_gtTTXLW</recordid><startdate>20151206</startdate><enddate>20151206</enddate><creator>Schreiber, Alfred</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151206</creationdate><title>Multivariate Stirling polynomials of the first and second kind</title><author>Schreiber, Alfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-8f9d3330c88077a6ceaebc2187f34f415f3d209e9bf36abb7b23cc07105a43253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Antipodes</topic><topic>Bell polynomials</topic><topic>Combinatorial analysis</topic><topic>Derivatives</topic><topic>Faà di Bruno formula</topic><topic>Functions (mathematics)</topic><topic>Inverse</topic><topic>Inversion laws</topic><topic>Inversions</topic><topic>Lagrange inversion</topic><topic>Mathematical analysis</topic><topic>Multivariate Stirling polynomials</topic><topic>Polynomials</topic><topic>Stirling numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schreiber, Alfred</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schreiber, Alfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Stirling polynomials of the first and second kind</atitle><jtitle>Discrete mathematics</jtitle><date>2015-12-06</date><risdate>2015</risdate><volume>338</volume><issue>12</issue><spage>2462</spage><epage>2484</epage><pages>2462-2484</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Two doubly indexed families of homogeneous and isobaric polynomials in several indeterminates are considered: the (partial) exponential Bell polynomials Bn,k and a new family Sn,k∈Z[X1,…,Xn−k+1] such that X1−(2n−1)Sn,k and Bn,k obey an inversion law which generalizes that of the Stirling numbers of the first and second kind. Both polynomial families appear as Lie coefficients in expansions of certain derivatives of higher order. Substituting Dj(φ) (the jth derivative of a fixed function φ) in place of the indeterminates Xj shows that both Sn,k and Bn,k are differential polynomials depending on φ and on its inverse φ¯, respectively. Some new light is shed thereby on Comtet’s solution of the Lagrange inversion problem in terms of the Bell polynomials. According to Haiman and Schmitt that solution is essentially the antipode on the Faà di Bruno Hopf algebra. It can be represented by X1−(2n−1)Sn,1. Moreover, a general expansion formula that holds for the whole family Sn,k (1≤k≤n) is established together with a closed expression for the coefficients of Sn,k. Several important properties of the Stirling numbers are demonstrated to be special cases of relations between the corresponding polynomials. As a non-trivial example, a Schlömilch-type formula is derived expressing Sn,k in terms of the Bell polynomials Bn,k, and vice versa.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2015.06.008</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2015-12, Vol.338 (12), p.2462-2484 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1718943322 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Antipodes Bell polynomials Combinatorial analysis Derivatives Faà di Bruno formula Functions (mathematics) Inverse Inversion laws Inversions Lagrange inversion Mathematical analysis Multivariate Stirling polynomials Polynomials Stirling numbers |
title | Multivariate Stirling polynomials of the first and second kind |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Stirling%20polynomials%20of%20the%20first%20and%20second%20kind&rft.jtitle=Discrete%20mathematics&rft.au=Schreiber,%20Alfred&rft.date=2015-12-06&rft.volume=338&rft.issue=12&rft.spage=2462&rft.epage=2484&rft.pages=2462-2484&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2015.06.008&rft_dat=%3Cproquest_cross%3E1718943322%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718943322&rft_id=info:pmid/&rft_els_id=S0012365X1500240X&rfr_iscdi=true |