Generic strange-metal behaviour of overdoped cuprates

We present an analysis of the temperature dependence of the zero-field in-plane resistivity ρab(T) of overdoped Tl2Ba2CuO6+δ (Tl2201). Taking our cue from earlier resistivity and angle-dependent magnetoresistance studies of Tl2201, as well as high-field measurements on La2−xSrxCuO4 (LSCO), we deline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2013-01, Vol.449 (1), p.12004-8
Hauptverfasser: Hussey, N E, Gordon-Moys, H, Kokalj, J, McKenzie, R H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 12004
container_title Journal of physics. Conference series
container_volume 449
creator Hussey, N E
Gordon-Moys, H
Kokalj, J
McKenzie, R H
description We present an analysis of the temperature dependence of the zero-field in-plane resistivity ρab(T) of overdoped Tl2Ba2CuO6+δ (Tl2201). Taking our cue from earlier resistivity and angle-dependent magnetoresistance studies of Tl2201, as well as high-field measurements on La2−xSrxCuO4 (LSCO), we delineate ρab(T) into two T-dependent components below 200 K, one linear in temperature, the other quadratic. As found in LSCO, the T-linear component α1(0) is finite for all superconducting samples, its magnitude scaling with the transition temperature Tc. By contrast, the T2 coefficient α2(0) is essentially doping independent. Such an extended regime (in doping) of T-linear resistivity at low T is at odds with conventional quantum critical scenarios involving the collapse of an ordered phase, possibly associated with the normal state pseudogap, to 0 K at a critical doping level. Its confirmation in Tl2201, whose electronic state (as revealed by quantum oscillation experiments) is highly homogeneous over hundreds of unit cells, appears to rule out phase separation or electronic inhomogeneity as the origin of this extended critical behaviour.
doi_str_mv 10.1088/1742-6596/449/1/012004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718940355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2577518176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-20b464879cb8411786ce5fd1d417be20ca2dfde5b6dd308e7fea5d3517b4e7d23</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-BSl48VKbaT57lEVXYcGLnkOaTLVLt61Ju-C_N8uKiHOZgfdheHkIuQZ6B1TrAhQvcykqWXBeFVBQKCnlJ2TxG5z-uc_JRYxbSlkatSBijT2G1mVxCrZ_x3yHk-2yGj_svh3mkA1NNuwx-GFEn7l5DHbCeEnOGttFvPrZS_L2-PC6eso3L-vn1f0md0zyKS9pzSXXqnK15gBKS4ei8eA5qBpL6mzpG4-ilt4zqlE1aIVnIqUclS_Zktwe_45h-JwxTmbXRoddZ3sc5mhAga44ZUIk9OYfuk31-9TOlEIpARqUTJQ8Ui4MMQZszBjanQ1fBqg52DQHUeYgyiSbBszRJvsGhG9nHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577518176</pqid></control><display><type>article</type><title>Generic strange-metal behaviour of overdoped cuprates</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Hussey, N E ; Gordon-Moys, H ; Kokalj, J ; McKenzie, R H</creator><creatorcontrib>Hussey, N E ; Gordon-Moys, H ; Kokalj, J ; McKenzie, R H</creatorcontrib><description>We present an analysis of the temperature dependence of the zero-field in-plane resistivity ρab(T) of overdoped Tl2Ba2CuO6+δ (Tl2201). Taking our cue from earlier resistivity and angle-dependent magnetoresistance studies of Tl2201, as well as high-field measurements on La2−xSrxCuO4 (LSCO), we delineate ρab(T) into two T-dependent components below 200 K, one linear in temperature, the other quadratic. As found in LSCO, the T-linear component α1(0) is finite for all superconducting samples, its magnitude scaling with the transition temperature Tc. By contrast, the T2 coefficient α2(0) is essentially doping independent. Such an extended regime (in doping) of T-linear resistivity at low T is at odds with conventional quantum critical scenarios involving the collapse of an ordered phase, possibly associated with the normal state pseudogap, to 0 K at a critical doping level. Its confirmation in Tl2201, whose electronic state (as revealed by quantum oscillation experiments) is highly homogeneous over hundreds of unit cells, appears to rule out phase separation or electronic inhomogeneity as the origin of this extended critical behaviour.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/449/1/012004</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>COLLAPSE ; COPPER OXIDE ; Cuprates ; Doping ; ELECTRICAL CONDUCTIVITY ; Electrical resistivity ; Electron states ; ELECTRONIC PRODUCTS ; Electronics ; Inhomogeneity ; Magnetoresistance ; MAGNETORESISTIVITY ; Oscillations ; Phase separation ; Physics ; Temperature dependence ; Transition temperature ; Unit cell</subject><ispartof>Journal of physics. Conference series, 2013-01, Vol.449 (1), p.12004-8</ispartof><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-20b464879cb8411786ce5fd1d417be20ca2dfde5b6dd308e7fea5d3517b4e7d23</citedby><cites>FETCH-LOGICAL-c364t-20b464879cb8411786ce5fd1d417be20ca2dfde5b6dd308e7fea5d3517b4e7d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hussey, N E</creatorcontrib><creatorcontrib>Gordon-Moys, H</creatorcontrib><creatorcontrib>Kokalj, J</creatorcontrib><creatorcontrib>McKenzie, R H</creatorcontrib><title>Generic strange-metal behaviour of overdoped cuprates</title><title>Journal of physics. Conference series</title><description>We present an analysis of the temperature dependence of the zero-field in-plane resistivity ρab(T) of overdoped Tl2Ba2CuO6+δ (Tl2201). Taking our cue from earlier resistivity and angle-dependent magnetoresistance studies of Tl2201, as well as high-field measurements on La2−xSrxCuO4 (LSCO), we delineate ρab(T) into two T-dependent components below 200 K, one linear in temperature, the other quadratic. As found in LSCO, the T-linear component α1(0) is finite for all superconducting samples, its magnitude scaling with the transition temperature Tc. By contrast, the T2 coefficient α2(0) is essentially doping independent. Such an extended regime (in doping) of T-linear resistivity at low T is at odds with conventional quantum critical scenarios involving the collapse of an ordered phase, possibly associated with the normal state pseudogap, to 0 K at a critical doping level. Its confirmation in Tl2201, whose electronic state (as revealed by quantum oscillation experiments) is highly homogeneous over hundreds of unit cells, appears to rule out phase separation or electronic inhomogeneity as the origin of this extended critical behaviour.</description><subject>COLLAPSE</subject><subject>COPPER OXIDE</subject><subject>Cuprates</subject><subject>Doping</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electrical resistivity</subject><subject>Electron states</subject><subject>ELECTRONIC PRODUCTS</subject><subject>Electronics</subject><subject>Inhomogeneity</subject><subject>Magnetoresistance</subject><subject>MAGNETORESISTIVITY</subject><subject>Oscillations</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Temperature dependence</subject><subject>Transition temperature</subject><subject>Unit cell</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LxDAQhoMouK7-BSl48VKbaT57lEVXYcGLnkOaTLVLt61Ju-C_N8uKiHOZgfdheHkIuQZ6B1TrAhQvcykqWXBeFVBQKCnlJ2TxG5z-uc_JRYxbSlkatSBijT2G1mVxCrZ_x3yHk-2yGj_svh3mkA1NNuwx-GFEn7l5DHbCeEnOGttFvPrZS_L2-PC6eso3L-vn1f0md0zyKS9pzSXXqnK15gBKS4ei8eA5qBpL6mzpG4-ilt4zqlE1aIVnIqUclS_Zktwe_45h-JwxTmbXRoddZ3sc5mhAga44ZUIk9OYfuk31-9TOlEIpARqUTJQ8Ui4MMQZszBjanQ1fBqg52DQHUeYgyiSbBszRJvsGhG9nHw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Hussey, N E</creator><creator>Gordon-Moys, H</creator><creator>Kokalj, J</creator><creator>McKenzie, R H</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>20130101</creationdate><title>Generic strange-metal behaviour of overdoped cuprates</title><author>Hussey, N E ; Gordon-Moys, H ; Kokalj, J ; McKenzie, R H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-20b464879cb8411786ce5fd1d417be20ca2dfde5b6dd308e7fea5d3517b4e7d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>COLLAPSE</topic><topic>COPPER OXIDE</topic><topic>Cuprates</topic><topic>Doping</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electrical resistivity</topic><topic>Electron states</topic><topic>ELECTRONIC PRODUCTS</topic><topic>Electronics</topic><topic>Inhomogeneity</topic><topic>Magnetoresistance</topic><topic>MAGNETORESISTIVITY</topic><topic>Oscillations</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Temperature dependence</topic><topic>Transition temperature</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussey, N E</creatorcontrib><creatorcontrib>Gordon-Moys, H</creatorcontrib><creatorcontrib>Kokalj, J</creatorcontrib><creatorcontrib>McKenzie, R H</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussey, N E</au><au>Gordon-Moys, H</au><au>Kokalj, J</au><au>McKenzie, R H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generic strange-metal behaviour of overdoped cuprates</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>449</volume><issue>1</issue><spage>12004</spage><epage>8</epage><pages>12004-8</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>We present an analysis of the temperature dependence of the zero-field in-plane resistivity ρab(T) of overdoped Tl2Ba2CuO6+δ (Tl2201). Taking our cue from earlier resistivity and angle-dependent magnetoresistance studies of Tl2201, as well as high-field measurements on La2−xSrxCuO4 (LSCO), we delineate ρab(T) into two T-dependent components below 200 K, one linear in temperature, the other quadratic. As found in LSCO, the T-linear component α1(0) is finite for all superconducting samples, its magnitude scaling with the transition temperature Tc. By contrast, the T2 coefficient α2(0) is essentially doping independent. Such an extended regime (in doping) of T-linear resistivity at low T is at odds with conventional quantum critical scenarios involving the collapse of an ordered phase, possibly associated with the normal state pseudogap, to 0 K at a critical doping level. Its confirmation in Tl2201, whose electronic state (as revealed by quantum oscillation experiments) is highly homogeneous over hundreds of unit cells, appears to rule out phase separation or electronic inhomogeneity as the origin of this extended critical behaviour.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/449/1/012004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2013-01, Vol.449 (1), p.12004-8
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718940355
source Institute of Physics IOPscience extra; IOP Publishing; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects COLLAPSE
COPPER OXIDE
Cuprates
Doping
ELECTRICAL CONDUCTIVITY
Electrical resistivity
Electron states
ELECTRONIC PRODUCTS
Electronics
Inhomogeneity
Magnetoresistance
MAGNETORESISTIVITY
Oscillations
Phase separation
Physics
Temperature dependence
Transition temperature
Unit cell
title Generic strange-metal behaviour of overdoped cuprates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generic%20strange-metal%20behaviour%20of%20overdoped%20cuprates&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Hussey,%20N%20E&rft.date=2013-01-01&rft.volume=449&rft.issue=1&rft.spage=12004&rft.epage=8&rft.pages=12004-8&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/449/1/012004&rft_dat=%3Cproquest_cross%3E2577518176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577518176&rft_id=info:pmid/&rfr_iscdi=true