Discriminative Pronunciation Modeling Using the MPE Criterion
Introducing pronunciation models into decoding has been proven to be benefit to LVCSR. In this paper, a discriminative pronunciation modeling method is presented, within the framework of the Minimum Phone Error (MPE) training for HMM/GMM. In order to bring the pronunciation models into the MPE train...
Gespeichert in:
Veröffentlicht in: | IEICE transactions on information and systems 2015-05, Vol.E98.D (3), p.717-720 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introducing pronunciation models into decoding has been proven to be benefit to LVCSR. In this paper, a discriminative pronunciation modeling method is presented, within the framework of the Minimum Phone Error (MPE) training for HMM/GMM. In order to bring the pronunciation models into the MPE training, the auxiliary function is rewritten at word level and decomposes into two parts. One is for co-training the acoustic models, and the other is for discriminatively training the pronunciation models. On Mandarin conversational telephone speech recognition task, compared to the baseline using a canonical lexicon, the discriminative pronunciation models reduced the absolute Character Error Rate (CER) by 0.7% on LDC test set, and with the acoustic model co-training, 0.8% additional CER decrease had been achieved. |
---|---|
ISSN: | 0916-8532 1745-1361 |