Discriminative Pronunciation Modeling Using the MPE Criterion

Introducing pronunciation models into decoding has been proven to be benefit to LVCSR. In this paper, a discriminative pronunciation modeling method is presented, within the framework of the Minimum Phone Error (MPE) training for HMM/GMM. In order to bring the pronunciation models into the MPE train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE transactions on information and systems 2015-05, Vol.E98.D (3), p.717-720
Hauptverfasser: Song, Meixu, Pan, Jielin, Zhao, Qingwei, Yan, Yonghong
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introducing pronunciation models into decoding has been proven to be benefit to LVCSR. In this paper, a discriminative pronunciation modeling method is presented, within the framework of the Minimum Phone Error (MPE) training for HMM/GMM. In order to bring the pronunciation models into the MPE training, the auxiliary function is rewritten at word level and decomposes into two parts. One is for co-training the acoustic models, and the other is for discriminatively training the pronunciation models. On Mandarin conversational telephone speech recognition task, compared to the baseline using a canonical lexicon, the discriminative pronunciation models reduced the absolute Character Error Rate (CER) by 0.7% on LDC test set, and with the acoustic model co-training, 0.8% additional CER decrease had been achieved.
ISSN:0916-8532
1745-1361