HgCdTe nanostructures on GaAs and Si substrate for IR and THz radiation detecting

All-round studies of heteroepitaxial HgCdTe nanostructures (NS) growth on GaAs and Si substrates by molecular beam epitaxy have been carried out. In case of Si substrate HgCdTe NS's is very perspectives for IR detectors because of equal thermal expention coefficient with silicon read-out circui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-01, Vol.345 (1), p.12002-15
Hauptverfasser: Yakushev, M V, Varavin, V S, Vasil'ev, V V, Dvoretsky, S A, Mikhailov, N N, Sabinina, I V, Sidorov, Yu G, Shvetz, V A, Aseev, A L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 12002
container_title Journal of physics. Conference series
container_volume 345
creator Yakushev, M V
Varavin, V S
Vasil'ev, V V
Dvoretsky, S A
Mikhailov, N N
Sabinina, I V
Sidorov, Yu G
Shvetz, V A
Aseev, A L
description All-round studies of heteroepitaxial HgCdTe nanostructures (NS) growth on GaAs and Si substrates by molecular beam epitaxy have been carried out. In case of Si substrate HgCdTe NS's is very perspectives for IR detectors because of equal thermal expention coefficient with silicon read-out circuits. The problems of HgCdTe conjugations with Si at epitaxy connected with large differences in lattice mismatch and differences in chemical bonding that leads to antiphased domains. We found that the precise formation of transition layer (2 nm in thickness between Si substrates and first ZnTe buffer layer leads to growth HgCdTe NS's without antiphrasis domains. V-defects and etch pits densities are equal to 103 cm−2 and 107 cm−2 respectively. The HgCdTe/Si were used for fabrication photovoltaic 640×512 MWIR focal plane arrays. The operability for λ1/2 4.2 μm (77K) was over 97%. The response (Sv) and NETD were as 1,5 × 109 V/W and less 20 mK respectively. We developed the precise growth of symmetric and antisymmetric HgTe QW. We found the following effects: the presence 2D electron gas with high mobilities over 5×105 cm/V×s in doped HgTe QW, the presence @D holes and electrons in undoped HgTe QW and high sensitivity to linear and circular polarized IR and THz radiation in 6 – 400 μm region.
doi_str_mv 10.1088/1742-6596/345/1/012002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718937126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578027018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d7a80e6731d21cb543396024f332da2be40d47833e75a6a2083b158108d77dcf3</originalsourceid><addsrcrecordid>eNpdkMFKAzEQQIMoWKu_IAEvXtbNJLtJeixF20JB1HoO2U22bGmTmmQP-vWmVjw4lxlmHsPMQ-gWyAMQKUsQFS14PeElq-oSSgKUEHqGRn-D879aykt0FeOWEJZDjNDLYjMza4uddj6mMLRpCDZi7_BcTyPWzuC3HsehyUOdLO58wMvXn_568YWDNr1OfcaNTbZNvdtco4tO76K9-c1j9P70uJ4titXzfDmbroqWAaTCCC2J5YKBodA2dcXYhBNadYxRo2ljK2IqIRmzotZcUyJZA7XMHxshTNuxMbo_7T0E_zHYmNS-j63d7bSzfogKBMgJE0B5Ru_-oVs_BJevU7QWklBBQGaKn6g2-BiD7dQh9HsdPhUQdTStjhLVUajKphWok2n2DRS8bqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578027018</pqid></control><display><type>article</type><title>HgCdTe nanostructures on GaAs and Si substrate for IR and THz radiation detecting</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Yakushev, M V ; Varavin, V S ; Vasil'ev, V V ; Dvoretsky, S A ; Mikhailov, N N ; Sabinina, I V ; Sidorov, Yu G ; Shvetz, V A ; Aseev, A L</creator><creatorcontrib>Yakushev, M V ; Varavin, V S ; Vasil'ev, V V ; Dvoretsky, S A ; Mikhailov, N N ; Sabinina, I V ; Sidorov, Yu G ; Shvetz, V A ; Aseev, A L</creatorcontrib><description>All-round studies of heteroepitaxial HgCdTe nanostructures (NS) growth on GaAs and Si substrates by molecular beam epitaxy have been carried out. In case of Si substrate HgCdTe NS's is very perspectives for IR detectors because of equal thermal expention coefficient with silicon read-out circuits. The problems of HgCdTe conjugations with Si at epitaxy connected with large differences in lattice mismatch and differences in chemical bonding that leads to antiphased domains. We found that the precise formation of transition layer (2 nm in thickness between Si substrates and first ZnTe buffer layer leads to growth HgCdTe NS's without antiphrasis domains. V-defects and etch pits densities are equal to 103 cm−2 and 107 cm−2 respectively. The HgCdTe/Si were used for fabrication photovoltaic 640×512 MWIR focal plane arrays. The operability for λ1/2 4.2 μm (77K) was over 97%. The response (Sv) and NETD were as 1,5 × 109 V/W and less 20 mK respectively. We developed the precise growth of symmetric and antisymmetric HgTe QW. We found the following effects: the presence 2D electron gas with high mobilities over 5×105 cm/V×s in doped HgTe QW, the presence @D holes and electrons in undoped HgTe QW and high sensitivity to linear and circular polarized IR and THz radiation in 6 – 400 μm region.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/345/1/012002</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Buffer layers ; Cadmium compounds ; Chemical bonds ; Domains ; Electron gas ; Epitaxial growth ; Etch pits ; Focal plane ; Focal plane devices ; Gallium arsenide ; Gallium arsenides ; Infrared radiation ; Intermetallics ; Mercury cadmium tellurides ; Mercury compounds ; Mercury tellurides ; Molecular beam epitaxy ; Nanostructure ; Physics ; Radiation ; Silicon substrates ; Tellurides ; Thickness ; Transition layers</subject><ispartof>Journal of physics. Conference series, 2012-01, Vol.345 (1), p.12002-15</ispartof><rights>Copyright IOP Publishing Feb 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-d7a80e6731d21cb543396024f332da2be40d47833e75a6a2083b158108d77dcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yakushev, M V</creatorcontrib><creatorcontrib>Varavin, V S</creatorcontrib><creatorcontrib>Vasil'ev, V V</creatorcontrib><creatorcontrib>Dvoretsky, S A</creatorcontrib><creatorcontrib>Mikhailov, N N</creatorcontrib><creatorcontrib>Sabinina, I V</creatorcontrib><creatorcontrib>Sidorov, Yu G</creatorcontrib><creatorcontrib>Shvetz, V A</creatorcontrib><creatorcontrib>Aseev, A L</creatorcontrib><title>HgCdTe nanostructures on GaAs and Si substrate for IR and THz radiation detecting</title><title>Journal of physics. Conference series</title><description>All-round studies of heteroepitaxial HgCdTe nanostructures (NS) growth on GaAs and Si substrates by molecular beam epitaxy have been carried out. In case of Si substrate HgCdTe NS's is very perspectives for IR detectors because of equal thermal expention coefficient with silicon read-out circuits. The problems of HgCdTe conjugations with Si at epitaxy connected with large differences in lattice mismatch and differences in chemical bonding that leads to antiphased domains. We found that the precise formation of transition layer (2 nm in thickness between Si substrates and first ZnTe buffer layer leads to growth HgCdTe NS's without antiphrasis domains. V-defects and etch pits densities are equal to 103 cm−2 and 107 cm−2 respectively. The HgCdTe/Si were used for fabrication photovoltaic 640×512 MWIR focal plane arrays. The operability for λ1/2 4.2 μm (77K) was over 97%. The response (Sv) and NETD were as 1,5 × 109 V/W and less 20 mK respectively. We developed the precise growth of symmetric and antisymmetric HgTe QW. We found the following effects: the presence 2D electron gas with high mobilities over 5×105 cm/V×s in doped HgTe QW, the presence @D holes and electrons in undoped HgTe QW and high sensitivity to linear and circular polarized IR and THz radiation in 6 – 400 μm region.</description><subject>Buffer layers</subject><subject>Cadmium compounds</subject><subject>Chemical bonds</subject><subject>Domains</subject><subject>Electron gas</subject><subject>Epitaxial growth</subject><subject>Etch pits</subject><subject>Focal plane</subject><subject>Focal plane devices</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Infrared radiation</subject><subject>Intermetallics</subject><subject>Mercury cadmium tellurides</subject><subject>Mercury compounds</subject><subject>Mercury tellurides</subject><subject>Molecular beam epitaxy</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Radiation</subject><subject>Silicon substrates</subject><subject>Tellurides</subject><subject>Thickness</subject><subject>Transition layers</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkMFKAzEQQIMoWKu_IAEvXtbNJLtJeixF20JB1HoO2U22bGmTmmQP-vWmVjw4lxlmHsPMQ-gWyAMQKUsQFS14PeElq-oSSgKUEHqGRn-D879aykt0FeOWEJZDjNDLYjMza4uddj6mMLRpCDZi7_BcTyPWzuC3HsehyUOdLO58wMvXn_568YWDNr1OfcaNTbZNvdtco4tO76K9-c1j9P70uJ4titXzfDmbroqWAaTCCC2J5YKBodA2dcXYhBNadYxRo2ljK2IqIRmzotZcUyJZA7XMHxshTNuxMbo_7T0E_zHYmNS-j63d7bSzfogKBMgJE0B5Ru_-oVs_BJevU7QWklBBQGaKn6g2-BiD7dQh9HsdPhUQdTStjhLVUajKphWok2n2DRS8bqY</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Yakushev, M V</creator><creator>Varavin, V S</creator><creator>Vasil'ev, V V</creator><creator>Dvoretsky, S A</creator><creator>Mikhailov, N N</creator><creator>Sabinina, I V</creator><creator>Sidorov, Yu G</creator><creator>Shvetz, V A</creator><creator>Aseev, A L</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QQ</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20120101</creationdate><title>HgCdTe nanostructures on GaAs and Si substrate for IR and THz radiation detecting</title><author>Yakushev, M V ; Varavin, V S ; Vasil'ev, V V ; Dvoretsky, S A ; Mikhailov, N N ; Sabinina, I V ; Sidorov, Yu G ; Shvetz, V A ; Aseev, A L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d7a80e6731d21cb543396024f332da2be40d47833e75a6a2083b158108d77dcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Buffer layers</topic><topic>Cadmium compounds</topic><topic>Chemical bonds</topic><topic>Domains</topic><topic>Electron gas</topic><topic>Epitaxial growth</topic><topic>Etch pits</topic><topic>Focal plane</topic><topic>Focal plane devices</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Infrared radiation</topic><topic>Intermetallics</topic><topic>Mercury cadmium tellurides</topic><topic>Mercury compounds</topic><topic>Mercury tellurides</topic><topic>Molecular beam epitaxy</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Radiation</topic><topic>Silicon substrates</topic><topic>Tellurides</topic><topic>Thickness</topic><topic>Transition layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yakushev, M V</creatorcontrib><creatorcontrib>Varavin, V S</creatorcontrib><creatorcontrib>Vasil'ev, V V</creatorcontrib><creatorcontrib>Dvoretsky, S A</creatorcontrib><creatorcontrib>Mikhailov, N N</creatorcontrib><creatorcontrib>Sabinina, I V</creatorcontrib><creatorcontrib>Sidorov, Yu G</creatorcontrib><creatorcontrib>Shvetz, V A</creatorcontrib><creatorcontrib>Aseev, A L</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yakushev, M V</au><au>Varavin, V S</au><au>Vasil'ev, V V</au><au>Dvoretsky, S A</au><au>Mikhailov, N N</au><au>Sabinina, I V</au><au>Sidorov, Yu G</au><au>Shvetz, V A</au><au>Aseev, A L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HgCdTe nanostructures on GaAs and Si substrate for IR and THz radiation detecting</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>345</volume><issue>1</issue><spage>12002</spage><epage>15</epage><pages>12002-15</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>All-round studies of heteroepitaxial HgCdTe nanostructures (NS) growth on GaAs and Si substrates by molecular beam epitaxy have been carried out. In case of Si substrate HgCdTe NS's is very perspectives for IR detectors because of equal thermal expention coefficient with silicon read-out circuits. The problems of HgCdTe conjugations with Si at epitaxy connected with large differences in lattice mismatch and differences in chemical bonding that leads to antiphased domains. We found that the precise formation of transition layer (2 nm in thickness between Si substrates and first ZnTe buffer layer leads to growth HgCdTe NS's without antiphrasis domains. V-defects and etch pits densities are equal to 103 cm−2 and 107 cm−2 respectively. The HgCdTe/Si were used for fabrication photovoltaic 640×512 MWIR focal plane arrays. The operability for λ1/2 4.2 μm (77K) was over 97%. The response (Sv) and NETD were as 1,5 × 109 V/W and less 20 mK respectively. We developed the precise growth of symmetric and antisymmetric HgTe QW. We found the following effects: the presence 2D electron gas with high mobilities over 5×105 cm/V×s in doped HgTe QW, the presence @D holes and electrons in undoped HgTe QW and high sensitivity to linear and circular polarized IR and THz radiation in 6 – 400 μm region.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/345/1/012002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2012-01, Vol.345 (1), p.12002-15
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718937126
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Buffer layers
Cadmium compounds
Chemical bonds
Domains
Electron gas
Epitaxial growth
Etch pits
Focal plane
Focal plane devices
Gallium arsenide
Gallium arsenides
Infrared radiation
Intermetallics
Mercury cadmium tellurides
Mercury compounds
Mercury tellurides
Molecular beam epitaxy
Nanostructure
Physics
Radiation
Silicon substrates
Tellurides
Thickness
Transition layers
title HgCdTe nanostructures on GaAs and Si substrate for IR and THz radiation detecting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HgCdTe%20nanostructures%20on%20GaAs%20and%20Si%20substrate%20for%20IR%20and%20THz%20radiation%20detecting&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yakushev,%20M%20V&rft.date=2012-01-01&rft.volume=345&rft.issue=1&rft.spage=12002&rft.epage=15&rft.pages=12002-15&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/345/1/012002&rft_dat=%3Cproquest_cross%3E2578027018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578027018&rft_id=info:pmid/&rfr_iscdi=true