Fractal descriptors for discrimination of microscopy images of plant leaves
This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors e...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2014-01, Vol.490 (1), p.12085-4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 1 |
container_start_page | 12085 |
container_title | Journal of physics. Conference series |
container_volume | 490 |
creator | Silva, N R Florindo, J B Gómez, M C Kolb, R M Bruno, O M |
description | This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images. |
doi_str_mv | 10.1088/1742-6596/490/1/012085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718931916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718931916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c8daa50ea75220ecb3befb8ebc7e37d3d4eae2281530c52a6d863540874fa1913</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-BQl48VKbj-ajR1lcFRe86Dmk6VS6tE1NWmH_vSkrIuYySeZheOdB6JqSO0q0zqkqWCZFKfOiJDnNCWVEixO0-m2c_rmfo4sY94TwdNQKvWyDdZPtcA3RhXacfIi48QHX7fLu28FOrR-wb3DfuuCj8-MBt739gLh8jp0dJtyB_YJ4ic4a20W4-qlr9L59eNs8ZbvXx-fN_S5zXBZT5nRtrSBglWCMgKt4BU2loXIKuKp5XYAFxjQVnDjBrKy15KIgWhWNpSXla3R7nDsG_zlDnEyfwkKXooCfo6GK6pInUib05h-693MYUjrDhJKSMF7qRMkjtSwYAzRmTKvbcDCUmMWxWfSZRZ9Jjg01R8f8G_wXb48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576602398</pqid></control><display><type>article</type><title>Fractal descriptors for discrimination of microscopy images of plant leaves</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Silva, N R ; Florindo, J B ; Gómez, M C ; Kolb, R M ; Bruno, O M</creator><creatorcontrib>Silva, N R ; Florindo, J B ; Gómez, M C ; Kolb, R M ; Bruno, O M</creatorcontrib><description>This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/490/1/012085</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Discrimination ; Fractal analysis ; Fractals ; Image analysis ; Image classification ; Leaves ; Microscopy ; Physical properties ; Physics ; Support vector machines ; Surface layer ; Surface layers ; Texture</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.490 (1), p.12085-4</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c8daa50ea75220ecb3befb8ebc7e37d3d4eae2281530c52a6d863540874fa1913</citedby><cites>FETCH-LOGICAL-c364t-c8daa50ea75220ecb3befb8ebc7e37d3d4eae2281530c52a6d863540874fa1913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Silva, N R</creatorcontrib><creatorcontrib>Florindo, J B</creatorcontrib><creatorcontrib>Gómez, M C</creatorcontrib><creatorcontrib>Kolb, R M</creatorcontrib><creatorcontrib>Bruno, O M</creatorcontrib><title>Fractal descriptors for discrimination of microscopy images of plant leaves</title><title>Journal of physics. Conference series</title><description>This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.</description><subject>Discrimination</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Leaves</subject><subject>Microscopy</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Support vector machines</subject><subject>Surface layer</subject><subject>Surface layers</subject><subject>Texture</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LxDAQhoMouK7-BQl48VKbj-ajR1lcFRe86Dmk6VS6tE1NWmH_vSkrIuYySeZheOdB6JqSO0q0zqkqWCZFKfOiJDnNCWVEixO0-m2c_rmfo4sY94TwdNQKvWyDdZPtcA3RhXacfIi48QHX7fLu28FOrR-wb3DfuuCj8-MBt739gLh8jp0dJtyB_YJ4ic4a20W4-qlr9L59eNs8ZbvXx-fN_S5zXBZT5nRtrSBglWCMgKt4BU2loXIKuKp5XYAFxjQVnDjBrKy15KIgWhWNpSXla3R7nDsG_zlDnEyfwkKXooCfo6GK6pInUib05h-693MYUjrDhJKSMF7qRMkjtSwYAzRmTKvbcDCUmMWxWfSZRZ9Jjg01R8f8G_wXb48</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Silva, N R</creator><creator>Florindo, J B</creator><creator>Gómez, M C</creator><creator>Kolb, R M</creator><creator>Bruno, O M</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Fractal descriptors for discrimination of microscopy images of plant leaves</title><author>Silva, N R ; Florindo, J B ; Gómez, M C ; Kolb, R M ; Bruno, O M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c8daa50ea75220ecb3befb8ebc7e37d3d4eae2281530c52a6d863540874fa1913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Discrimination</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Leaves</topic><topic>Microscopy</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Support vector machines</topic><topic>Surface layer</topic><topic>Surface layers</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, N R</creatorcontrib><creatorcontrib>Florindo, J B</creatorcontrib><creatorcontrib>Gómez, M C</creatorcontrib><creatorcontrib>Kolb, R M</creatorcontrib><creatorcontrib>Bruno, O M</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, N R</au><au>Florindo, J B</au><au>Gómez, M C</au><au>Kolb, R M</au><au>Bruno, O M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal descriptors for discrimination of microscopy images of plant leaves</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>490</volume><issue>1</issue><spage>12085</spage><epage>4</epage><pages>12085-4</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/490/1/012085</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2014-01, Vol.490 (1), p.12085-4 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718931916 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Discrimination Fractal analysis Fractals Image analysis Image classification Leaves Microscopy Physical properties Physics Support vector machines Surface layer Surface layers Texture |
title | Fractal descriptors for discrimination of microscopy images of plant leaves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20descriptors%20for%20discrimination%20of%20microscopy%20images%20of%20plant%20leaves&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Silva,%20N%20R&rft.date=2014-01-01&rft.volume=490&rft.issue=1&rft.spage=12085&rft.epage=4&rft.pages=12085-4&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/490/1/012085&rft_dat=%3Cproquest_cross%3E1718931916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576602398&rft_id=info:pmid/&rfr_iscdi=true |