Application of small-scale testing for investigation of ion-beam-irradiated materials
Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar comp...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2012-11, Vol.27 (21), p.2724-2736 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2736 |
---|---|
container_issue | 21 |
container_start_page | 2724 |
container_title | Journal of materials research |
container_volume | 27 |
creator | Kiener, Daniel Minor, Andrew M. Anderoglu, Osman Wang, Yongqiang Maloy, Stuart A. Hosemann, Peter |
description | Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry. |
doi_str_mv | 10.1557/jmr.2012.303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718925260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_303</cupid><sourcerecordid>2944443661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI7ufICCGxem5qS5tMth8AYDLtR1SNO0ZOjNpBV8ezPMICKCm_Nz4Ds_hw-hSyApcC5vt51PKQGaZiQ7QgtKGMM8o-IYLUieM0wLYKfoLIQtIcCJZAv0thrH1hk9uaFPhjoJnW5bHIxubTLZMLm-SerBJ67_2G3NNxgDl1Z32HmvK6cnWyVdnN7pNpyjkzqGvTjkEr3c372uH_Hm-eFpvdpgw6SYMNiaGcIoE7XROVQV5LXVXECVWV4IZgpGLYNMVJKWJs-JNCUxRIMsuWDZEl3vW0c_vM_xPdW5YGzb6t4Oc1AgIS8op4JE9OoXuh1m38ffFERBMuMF4ZG62VPGDyF4W6vRu077TwVE7QyraFjtDKtoOOJ4j4eI9Y31P0r_5tNDve5K76rG_nPwBclajL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326735905</pqid></control><display><type>article</type><title>Application of small-scale testing for investigation of ion-beam-irradiated materials</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Kiener, Daniel ; Minor, Andrew M. ; Anderoglu, Osman ; Wang, Yongqiang ; Maloy, Stuart A. ; Hosemann, Peter</creator><creatorcontrib>Kiener, Daniel ; Minor, Andrew M. ; Anderoglu, Osman ; Wang, Yongqiang ; Maloy, Stuart A. ; Hosemann, Peter</creatorcontrib><description>Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.303</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Beams (radiation) ; Biomaterials ; Cost control ; Experiments ; Half spaces ; Inorganic Chemistry ; Invited Feature Papers ; Ion beams ; Laboratories ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Nanoindentation ; Nanostructure ; Nanotechnology ; Nuclear reactors ; Penetration depth ; Pillars ; Radiation ; Single crystals ; Small scale</subject><ispartof>Journal of materials research, 2012-11, Vol.27 (21), p.2724-2736</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</citedby><cites>FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2012.303$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291412003032/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Minor, Andrew M.</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><creatorcontrib>Wang, Yongqiang</creatorcontrib><creatorcontrib>Maloy, Stuart A.</creatorcontrib><creatorcontrib>Hosemann, Peter</creatorcontrib><title>Application of small-scale testing for investigation of ion-beam-irradiated materials</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.</description><subject>Applied and Technical Physics</subject><subject>Beams (radiation)</subject><subject>Biomaterials</subject><subject>Cost control</subject><subject>Experiments</subject><subject>Half spaces</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Papers</subject><subject>Ion beams</subject><subject>Laboratories</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nuclear reactors</subject><subject>Penetration depth</subject><subject>Pillars</subject><subject>Radiation</subject><subject>Single crystals</subject><subject>Small scale</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKxDAUhoMoOI7ufICCGxem5qS5tMth8AYDLtR1SNO0ZOjNpBV8ezPMICKCm_Nz4Ds_hw-hSyApcC5vt51PKQGaZiQ7QgtKGMM8o-IYLUieM0wLYKfoLIQtIcCJZAv0thrH1hk9uaFPhjoJnW5bHIxubTLZMLm-SerBJ67_2G3NNxgDl1Z32HmvK6cnWyVdnN7pNpyjkzqGvTjkEr3c372uH_Hm-eFpvdpgw6SYMNiaGcIoE7XROVQV5LXVXECVWV4IZgpGLYNMVJKWJs-JNCUxRIMsuWDZEl3vW0c_vM_xPdW5YGzb6t4Oc1AgIS8op4JE9OoXuh1m38ffFERBMuMF4ZG62VPGDyF4W6vRu077TwVE7QyraFjtDKtoOOJ4j4eI9Y31P0r_5tNDve5K76rG_nPwBclajL8</recordid><startdate>20121114</startdate><enddate>20121114</enddate><creator>Kiener, Daniel</creator><creator>Minor, Andrew M.</creator><creator>Anderoglu, Osman</creator><creator>Wang, Yongqiang</creator><creator>Maloy, Stuart A.</creator><creator>Hosemann, Peter</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20121114</creationdate><title>Application of small-scale testing for investigation of ion-beam-irradiated materials</title><author>Kiener, Daniel ; Minor, Andrew M. ; Anderoglu, Osman ; Wang, Yongqiang ; Maloy, Stuart A. ; Hosemann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied and Technical Physics</topic><topic>Beams (radiation)</topic><topic>Biomaterials</topic><topic>Cost control</topic><topic>Experiments</topic><topic>Half spaces</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Papers</topic><topic>Ion beams</topic><topic>Laboratories</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nuclear reactors</topic><topic>Penetration depth</topic><topic>Pillars</topic><topic>Radiation</topic><topic>Single crystals</topic><topic>Small scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Minor, Andrew M.</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><creatorcontrib>Wang, Yongqiang</creatorcontrib><creatorcontrib>Maloy, Stuart A.</creatorcontrib><creatorcontrib>Hosemann, Peter</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiener, Daniel</au><au>Minor, Andrew M.</au><au>Anderoglu, Osman</au><au>Wang, Yongqiang</au><au>Maloy, Stuart A.</au><au>Hosemann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of small-scale testing for investigation of ion-beam-irradiated materials</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2012-11-14</date><risdate>2012</risdate><volume>27</volume><issue>21</issue><spage>2724</spage><epage>2736</epage><pages>2724-2736</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.303</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2012-11, Vol.27 (21), p.2724-2736 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718925260 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Applied and Technical Physics Beams (radiation) Biomaterials Cost control Experiments Half spaces Inorganic Chemistry Invited Feature Papers Ion beams Laboratories Materials Engineering Materials research Materials Science Mechanical properties Nanoindentation Nanostructure Nanotechnology Nuclear reactors Penetration depth Pillars Radiation Single crystals Small scale |
title | Application of small-scale testing for investigation of ion-beam-irradiated materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20small-scale%20testing%20for%20investigation%20of%20ion-beam-irradiated%20materials&rft.jtitle=Journal%20of%20materials%20research&rft.au=Kiener,%20Daniel&rft.date=2012-11-14&rft.volume=27&rft.issue=21&rft.spage=2724&rft.epage=2736&rft.pages=2724-2736&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.303&rft_dat=%3Cproquest_cross%3E2944443661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326735905&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_303&rfr_iscdi=true |