Application of small-scale testing for investigation of ion-beam-irradiated materials

Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2012-11, Vol.27 (21), p.2724-2736
Hauptverfasser: Kiener, Daniel, Minor, Andrew M., Anderoglu, Osman, Wang, Yongqiang, Maloy, Stuart A., Hosemann, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2736
container_issue 21
container_start_page 2724
container_title Journal of materials research
container_volume 27
creator Kiener, Daniel
Minor, Andrew M.
Anderoglu, Osman
Wang, Yongqiang
Maloy, Stuart A.
Hosemann, Peter
description Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.
doi_str_mv 10.1557/jmr.2012.303
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718925260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2012_303</cupid><sourcerecordid>2944443661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</originalsourceid><addsrcrecordid>eNqFkMtKxDAUhoMoOI7ufICCGxem5qS5tMth8AYDLtR1SNO0ZOjNpBV8ezPMICKCm_Nz4Ds_hw-hSyApcC5vt51PKQGaZiQ7QgtKGMM8o-IYLUieM0wLYKfoLIQtIcCJZAv0thrH1hk9uaFPhjoJnW5bHIxubTLZMLm-SerBJ67_2G3NNxgDl1Z32HmvK6cnWyVdnN7pNpyjkzqGvTjkEr3c372uH_Hm-eFpvdpgw6SYMNiaGcIoE7XROVQV5LXVXECVWV4IZgpGLYNMVJKWJs-JNCUxRIMsuWDZEl3vW0c_vM_xPdW5YGzb6t4Oc1AgIS8op4JE9OoXuh1m38ffFERBMuMF4ZG62VPGDyF4W6vRu077TwVE7QyraFjtDKtoOOJ4j4eI9Y31P0r_5tNDve5K76rG_nPwBclajL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326735905</pqid></control><display><type>article</type><title>Application of small-scale testing for investigation of ion-beam-irradiated materials</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Kiener, Daniel ; Minor, Andrew M. ; Anderoglu, Osman ; Wang, Yongqiang ; Maloy, Stuart A. ; Hosemann, Peter</creator><creatorcontrib>Kiener, Daniel ; Minor, Andrew M. ; Anderoglu, Osman ; Wang, Yongqiang ; Maloy, Stuart A. ; Hosemann, Peter</creatorcontrib><description>Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2012.303</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Beams (radiation) ; Biomaterials ; Cost control ; Experiments ; Half spaces ; Inorganic Chemistry ; Invited Feature Papers ; Ion beams ; Laboratories ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Nanoindentation ; Nanostructure ; Nanotechnology ; Nuclear reactors ; Penetration depth ; Pillars ; Radiation ; Single crystals ; Small scale</subject><ispartof>Journal of materials research, 2012-11, Vol.27 (21), p.2724-2736</ispartof><rights>Copyright © Materials Research Society 2012</rights><rights>The Materials Research Society 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</citedby><cites>FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2012.303$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291412003032/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,41488,42557,51319,55628</link.rule.ids></links><search><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Minor, Andrew M.</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><creatorcontrib>Wang, Yongqiang</creatorcontrib><creatorcontrib>Maloy, Stuart A.</creatorcontrib><creatorcontrib>Hosemann, Peter</creatorcontrib><title>Application of small-scale testing for investigation of ion-beam-irradiated materials</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.</description><subject>Applied and Technical Physics</subject><subject>Beams (radiation)</subject><subject>Biomaterials</subject><subject>Cost control</subject><subject>Experiments</subject><subject>Half spaces</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Papers</subject><subject>Ion beams</subject><subject>Laboratories</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Nuclear reactors</subject><subject>Penetration depth</subject><subject>Pillars</subject><subject>Radiation</subject><subject>Single crystals</subject><subject>Small scale</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKxDAUhoMoOI7ufICCGxem5qS5tMth8AYDLtR1SNO0ZOjNpBV8ezPMICKCm_Nz4Ds_hw-hSyApcC5vt51PKQGaZiQ7QgtKGMM8o-IYLUieM0wLYKfoLIQtIcCJZAv0thrH1hk9uaFPhjoJnW5bHIxubTLZMLm-SerBJ67_2G3NNxgDl1Z32HmvK6cnWyVdnN7pNpyjkzqGvTjkEr3c372uH_Hm-eFpvdpgw6SYMNiaGcIoE7XROVQV5LXVXECVWV4IZgpGLYNMVJKWJs-JNCUxRIMsuWDZEl3vW0c_vM_xPdW5YGzb6t4Oc1AgIS8op4JE9OoXuh1m38ffFERBMuMF4ZG62VPGDyF4W6vRu077TwVE7QyraFjtDKtoOOJ4j4eI9Y31P0r_5tNDve5K76rG_nPwBclajL8</recordid><startdate>20121114</startdate><enddate>20121114</enddate><creator>Kiener, Daniel</creator><creator>Minor, Andrew M.</creator><creator>Anderoglu, Osman</creator><creator>Wang, Yongqiang</creator><creator>Maloy, Stuart A.</creator><creator>Hosemann, Peter</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20121114</creationdate><title>Application of small-scale testing for investigation of ion-beam-irradiated materials</title><author>Kiener, Daniel ; Minor, Andrew M. ; Anderoglu, Osman ; Wang, Yongqiang ; Maloy, Stuart A. ; Hosemann, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-1ef4c04246fca81dd18fea561d3e5964c942e4136d72bc8807cb0c0a17b5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied and Technical Physics</topic><topic>Beams (radiation)</topic><topic>Biomaterials</topic><topic>Cost control</topic><topic>Experiments</topic><topic>Half spaces</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Papers</topic><topic>Ion beams</topic><topic>Laboratories</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Nuclear reactors</topic><topic>Penetration depth</topic><topic>Pillars</topic><topic>Radiation</topic><topic>Single crystals</topic><topic>Small scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiener, Daniel</creatorcontrib><creatorcontrib>Minor, Andrew M.</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><creatorcontrib>Wang, Yongqiang</creatorcontrib><creatorcontrib>Maloy, Stuart A.</creatorcontrib><creatorcontrib>Hosemann, Peter</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiener, Daniel</au><au>Minor, Andrew M.</au><au>Anderoglu, Osman</au><au>Wang, Yongqiang</au><au>Maloy, Stuart A.</au><au>Hosemann, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of small-scale testing for investigation of ion-beam-irradiated materials</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2012-11-14</date><risdate>2012</risdate><volume>27</volume><issue>21</issue><spage>2724</spage><epage>2736</epage><pages>2724-2736</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Small-scale testing techniques such as nanoindentation and micro-/nanocompression are promising methods for addressing mechanical properties of ion-beam-irradiated materials. We performed different proton irradiations and critically evaluated the results obtained from nanoindentation and pillar compression, both performed parallel and perpendicular to the irradiation direction. Experiments parallel to beam direction suffer from variation of material properties with penetration depth. This is improved by cross-sectional experiments, thereby probing the effect of different doses along the beam penetration depth on mechanical properties. Finally, we demonstrate that, compared with nanoindentation, miniaturized uniaxial compression experiments offer a more reliable and straightforward interpretation of the mechanical data, as they impose a nominally uniaxial stress on a well-defined volume at a specific position. Moreover, the exposed pillar geometry is not influenced by surface contamination and enables in situ observation of the governing mechanical processes, which is typically not possible during indentation experiments in a half-space geometry.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2012.303</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2012-11, Vol.27 (21), p.2724-2736
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1718925260
source SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete
subjects Applied and Technical Physics
Beams (radiation)
Biomaterials
Cost control
Experiments
Half spaces
Inorganic Chemistry
Invited Feature Papers
Ion beams
Laboratories
Materials Engineering
Materials research
Materials Science
Mechanical properties
Nanoindentation
Nanostructure
Nanotechnology
Nuclear reactors
Penetration depth
Pillars
Radiation
Single crystals
Small scale
title Application of small-scale testing for investigation of ion-beam-irradiated materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20small-scale%20testing%20for%20investigation%20of%20ion-beam-irradiated%20materials&rft.jtitle=Journal%20of%20materials%20research&rft.au=Kiener,%20Daniel&rft.date=2012-11-14&rft.volume=27&rft.issue=21&rft.spage=2724&rft.epage=2736&rft.pages=2724-2736&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2012.303&rft_dat=%3Cproquest_cross%3E2944443661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326735905&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2012_303&rfr_iscdi=true