A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies

The paper deals with membrane reinforced bodies with the membrane treated as a two-dimensional surface with concentrated material properties. The bulk response of the matrix is treated separately in two cases: (a) as a coercive nonlinear material with convex stored energy function expressed in the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2014-05, Vol.26 (3), p.343-372
Hauptverfasser: Lucchesi, M., Šilhavý, M., Zani, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 3
container_start_page 343
container_title Continuum mechanics and thermodynamics
container_volume 26
creator Lucchesi, M.
Šilhavý, M.
Zani, N.
description The paper deals with membrane reinforced bodies with the membrane treated as a two-dimensional surface with concentrated material properties. The bulk response of the matrix is treated separately in two cases: (a) as a coercive nonlinear material with convex stored energy function expressed in the small strain tensor, and (b) as a no-tension material (where the coercivity assumption is not satisfied). The membrane response is assumed to be nonlinear in the surface strain tensor. For the nonlinear bulk response in Case (a), the existence of states of minimum energy is proved. Under suitable growth conditions, the equilibrium states are proved to be exactly states of minimum energy. Then, under appropriate invertibility condition of the stress function, the principle of minimum complementary energy is proved for equilibrium states. For the no-tension material in Case (b), the principle of minimum complementary energy (in the absence of the invertibility assumption) is proved. Also, a theorem is proved stating that the total energy of the system is bounded from below if and only if the loads can be equilibrated by a stress field that is statically admissible and the bulk stress is negative semidefinite. Two examples are given. In the first, we consider the elastic semi-infinite plate with attached stiffener on the boundary (Melan’s problem). In the second example, we present a stress solution for a rectangular panel with membrane occupying the main diagonal plane.
doi_str_mv 10.1007/s00161-013-0305-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718923820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389799764</galeid><sourcerecordid>A389799764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-dce825139bea818f3333728a62307c00f62a70d40c071608418227f4b44416703</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVooZuPH9CboJdcvJ3RhyUdl5CkCyntIb1GyPI4cVjbW8kLyb-PFvdQCoFKB8HwPGJmXsY-I6wRwHzNAFhjBSgrkKCrlxO2QiVFBU67D2wFTuoK0ehP7DTnZyiO03LFHja87RPFmYf9Pk0hPvF54l3fUOJhbPlAQ5PCSDxRP3ZTitTyZmp7ymv-M6SZb7dr_v1d6Jx97MIu08Wf94z9urm-v_pW3f243V5t7qoojZyrNpIVGqVrKFi0nSzHCBtqIcFEgK4WwUCrIILBGqxCK4TpVKOUwtqAPGOXy79lht8HyrMf-hxptytdTYfs0aB1QlrxH6hWqIR2tSvol3_Q5-mQxjJIodBq5wBtodYL9Rh25I8LmFOI5bY09HEaqetLfSOtM86ZWhUBFyGmKedEnd-nfgjp1SP4Y5p-SdOXNP0xTf9SHLE4ubDjI6W_WnlXegPWAJ6I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518599018</pqid></control><display><type>article</type><title>A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies</title><source>Springer Nature - Complete Springer Journals</source><creator>Lucchesi, M. ; Šilhavý, M. ; Zani, N.</creator><creatorcontrib>Lucchesi, M. ; Šilhavý, M. ; Zani, N.</creatorcontrib><description>The paper deals with membrane reinforced bodies with the membrane treated as a two-dimensional surface with concentrated material properties. The bulk response of the matrix is treated separately in two cases: (a) as a coercive nonlinear material with convex stored energy function expressed in the small strain tensor, and (b) as a no-tension material (where the coercivity assumption is not satisfied). The membrane response is assumed to be nonlinear in the surface strain tensor. For the nonlinear bulk response in Case (a), the existence of states of minimum energy is proved. Under suitable growth conditions, the equilibrium states are proved to be exactly states of minimum energy. Then, under appropriate invertibility condition of the stress function, the principle of minimum complementary energy is proved for equilibrium states. For the no-tension material in Case (b), the principle of minimum complementary energy (in the absence of the invertibility assumption) is proved. Also, a theorem is proved stating that the total energy of the system is bounded from below if and only if the loads can be equilibrated by a stress field that is statically admissible and the bulk stress is negative semidefinite. Two examples are given. In the first, we consider the elastic semi-infinite plate with attached stiffener on the boundary (Melan’s problem). In the second example, we present a stress solution for a rectangular panel with membrane occupying the main diagonal plane.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-013-0305-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Continuum Physics ; Coercive force ; Energy ; Engineering Thermodynamics ; Growth conditions ; Heat and Mass Transfer ; Materials science ; Mathematical analysis ; Mechanics ; Membranes ; Nonlinearity ; Original Article ; Physics ; Physics and Astronomy ; Strain ; Stresses ; Structural Materials ; Tensors ; Theorems ; Theoretical and Applied Mechanics</subject><ispartof>Continuum mechanics and thermodynamics, 2014-05, Vol.26 (3), p.343-372</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c373t-dce825139bea818f3333728a62307c00f62a70d40c071608418227f4b44416703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-013-0305-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-013-0305-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lucchesi, M.</creatorcontrib><creatorcontrib>Šilhavý, M.</creatorcontrib><creatorcontrib>Zani, N.</creatorcontrib><title>A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>The paper deals with membrane reinforced bodies with the membrane treated as a two-dimensional surface with concentrated material properties. The bulk response of the matrix is treated separately in two cases: (a) as a coercive nonlinear material with convex stored energy function expressed in the small strain tensor, and (b) as a no-tension material (where the coercivity assumption is not satisfied). The membrane response is assumed to be nonlinear in the surface strain tensor. For the nonlinear bulk response in Case (a), the existence of states of minimum energy is proved. Under suitable growth conditions, the equilibrium states are proved to be exactly states of minimum energy. Then, under appropriate invertibility condition of the stress function, the principle of minimum complementary energy is proved for equilibrium states. For the no-tension material in Case (b), the principle of minimum complementary energy (in the absence of the invertibility assumption) is proved. Also, a theorem is proved stating that the total energy of the system is bounded from below if and only if the loads can be equilibrated by a stress field that is statically admissible and the bulk stress is negative semidefinite. Two examples are given. In the first, we consider the elastic semi-infinite plate with attached stiffener on the boundary (Melan’s problem). In the second example, we present a stress solution for a rectangular panel with membrane occupying the main diagonal plane.</description><subject>Classical and Continuum Physics</subject><subject>Coercive force</subject><subject>Energy</subject><subject>Engineering Thermodynamics</subject><subject>Growth conditions</subject><subject>Heat and Mass Transfer</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Membranes</subject><subject>Nonlinearity</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Strain</subject><subject>Stresses</subject><subject>Structural Materials</subject><subject>Tensors</subject><subject>Theorems</subject><subject>Theoretical and Applied Mechanics</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1r3DAQhkVooZuPH9CboJdcvJ3RhyUdl5CkCyntIb1GyPI4cVjbW8kLyb-PFvdQCoFKB8HwPGJmXsY-I6wRwHzNAFhjBSgrkKCrlxO2QiVFBU67D2wFTuoK0ehP7DTnZyiO03LFHja87RPFmYf9Pk0hPvF54l3fUOJhbPlAQ5PCSDxRP3ZTitTyZmp7ymv-M6SZb7dr_v1d6Jx97MIu08Wf94z9urm-v_pW3f243V5t7qoojZyrNpIVGqVrKFi0nSzHCBtqIcFEgK4WwUCrIILBGqxCK4TpVKOUwtqAPGOXy79lht8HyrMf-hxptytdTYfs0aB1QlrxH6hWqIR2tSvol3_Q5-mQxjJIodBq5wBtodYL9Rh25I8LmFOI5bY09HEaqetLfSOtM86ZWhUBFyGmKedEnd-nfgjp1SP4Y5p-SdOXNP0xTf9SHLE4ubDjI6W_WnlXegPWAJ6I</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Lucchesi, M.</creator><creator>Šilhavý, M.</creator><creator>Zani, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140501</creationdate><title>A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies</title><author>Lucchesi, M. ; Šilhavý, M. ; Zani, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-dce825139bea818f3333728a62307c00f62a70d40c071608418227f4b44416703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical and Continuum Physics</topic><topic>Coercive force</topic><topic>Energy</topic><topic>Engineering Thermodynamics</topic><topic>Growth conditions</topic><topic>Heat and Mass Transfer</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Membranes</topic><topic>Nonlinearity</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Strain</topic><topic>Stresses</topic><topic>Structural Materials</topic><topic>Tensors</topic><topic>Theorems</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucchesi, M.</creatorcontrib><creatorcontrib>Šilhavý, M.</creatorcontrib><creatorcontrib>Zani, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucchesi, M.</au><au>Šilhavý, M.</au><au>Zani, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>26</volume><issue>3</issue><spage>343</spage><epage>372</epage><pages>343-372</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>The paper deals with membrane reinforced bodies with the membrane treated as a two-dimensional surface with concentrated material properties. The bulk response of the matrix is treated separately in two cases: (a) as a coercive nonlinear material with convex stored energy function expressed in the small strain tensor, and (b) as a no-tension material (where the coercivity assumption is not satisfied). The membrane response is assumed to be nonlinear in the surface strain tensor. For the nonlinear bulk response in Case (a), the existence of states of minimum energy is proved. Under suitable growth conditions, the equilibrium states are proved to be exactly states of minimum energy. Then, under appropriate invertibility condition of the stress function, the principle of minimum complementary energy is proved for equilibrium states. For the no-tension material in Case (b), the principle of minimum complementary energy (in the absence of the invertibility assumption) is proved. Also, a theorem is proved stating that the total energy of the system is bounded from below if and only if the loads can be equilibrated by a stress field that is statically admissible and the bulk stress is negative semidefinite. Two examples are given. In the first, we consider the elastic semi-infinite plate with attached stiffener on the boundary (Melan’s problem). In the second example, we present a stress solution for a rectangular panel with membrane occupying the main diagonal plane.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-013-0305-x</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2014-05, Vol.26 (3), p.343-372
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_miscellaneous_1718923820
source Springer Nature - Complete Springer Journals
subjects Classical and Continuum Physics
Coercive force
Energy
Engineering Thermodynamics
Growth conditions
Heat and Mass Transfer
Materials science
Mathematical analysis
Mechanics
Membranes
Nonlinearity
Original Article
Physics
Physics and Astronomy
Strain
Stresses
Structural Materials
Tensors
Theorems
Theoretical and Applied Mechanics
title A direct approach to fiber and membrane reinforced bodies. Part II. Membrane reinforced bodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20direct%20approach%20to%20fiber%20and%20membrane%20reinforced%20bodies.%20Part%20II.%20Membrane%20reinforced%20bodies&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Lucchesi,%20M.&rft.date=2014-05-01&rft.volume=26&rft.issue=3&rft.spage=343&rft.epage=372&rft.pages=343-372&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-013-0305-x&rft_dat=%3Cgale_proqu%3EA389799764%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518599018&rft_id=info:pmid/&rft_galeid=A389799764&rfr_iscdi=true