A new method of construction of all sets of mutually unbiased bases for two-qubit systems

Mutually unbiased bases are an important tool in many applications of quantum information theory. We present a new algorithm for finding the mutually unbiased bases for two-qubit systems. We derive a system of four equations in the Galois field GF(4) and show that the solutions of this system are su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2012-01, Vol.338 (1), p.12008-6
1. Verfasser: Ghiu, Iulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 1
container_start_page 12008
container_title Journal of physics. Conference series
container_volume 338
creator Ghiu, Iulia
description Mutually unbiased bases are an important tool in many applications of quantum information theory. We present a new algorithm for finding the mutually unbiased bases for two-qubit systems. We derive a system of four equations in the Galois field GF(4) and show that the solutions of this system are sufficient for obtaining the most general set of mutually unbiased bases. Further, our algorithm is applied to an example and we show that there are three possible solutions of the system of four equations, each solution leading to a different set of mutually unbiased bases.
doi_str_mv 10.1088/1742-6596/338/1/012008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718922946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718922946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-c15260c22dc580d65f101a3dd63104342968d7c2c10a1dc764c34a3230cd542d3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt_QQJevKzN12Z3j6X4BQUvevAU0iSLW3Y3bSah9N-bpSLiHGbel3kZhgehW0oeKKnrBa0EK2TZyAXn2S0IZYTUZ2j2uzj_oy_RFcCWEJ6rmqHPJR7dAQ8ufnmLfYuNHyGGZGLnx8nrvsfgIkx6SDFlf8Rp3HQanMWb3AG3PuB48MU-bbqI4QjRDXCNLlrdg7v5mXP08fT4vnop1m_Pr6vlujBcilgYWjJJDGPWlDWxsmwpoZpbKzklggvWyNpWhhlKNLWmksJwoTnjxNhSMMvn6P50dxf8PjmIaujAuL7Xo_MJFK1o3TDWCJmjd_-iW5_CmL9TrKyqphSUkpySp5QJHiC4Vu1CN-hwVJSoibiaYKoJpsrEFVUn4vwbbepytw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577954110</pqid></control><display><type>article</type><title>A new method of construction of all sets of mutually unbiased bases for two-qubit systems</title><source>Institute of Physics IOPscience extra</source><source>IOP_英国物理学会OA刊</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ghiu, Iulia</creator><creatorcontrib>Ghiu, Iulia</creatorcontrib><description>Mutually unbiased bases are an important tool in many applications of quantum information theory. We present a new algorithm for finding the mutually unbiased bases for two-qubit systems. We derive a system of four equations in the Galois field GF(4) and show that the solutions of this system are sufficient for obtaining the most general set of mutually unbiased bases. Further, our algorithm is applied to an example and we show that there are three possible solutions of the system of four equations, each solution leading to a different set of mutually unbiased bases.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/338/1/012008</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Construction ; Information theory ; Mathematical analysis ; Physics ; Quantum phenomena ; Qubits (quantum computing)</subject><ispartof>Journal of physics. Conference series, 2012-01, Vol.338 (1), p.12008-6</ispartof><rights>Copyright IOP Publishing Feb 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-c15260c22dc580d65f101a3dd63104342968d7c2c10a1dc764c34a3230cd542d3</citedby><cites>FETCH-LOGICAL-c364t-c15260c22dc580d65f101a3dd63104342968d7c2c10a1dc764c34a3230cd542d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghiu, Iulia</creatorcontrib><title>A new method of construction of all sets of mutually unbiased bases for two-qubit systems</title><title>Journal of physics. Conference series</title><description>Mutually unbiased bases are an important tool in many applications of quantum information theory. We present a new algorithm for finding the mutually unbiased bases for two-qubit systems. We derive a system of four equations in the Galois field GF(4) and show that the solutions of this system are sufficient for obtaining the most general set of mutually unbiased bases. Further, our algorithm is applied to an example and we show that there are three possible solutions of the system of four equations, each solution leading to a different set of mutually unbiased bases.</description><subject>Algorithms</subject><subject>Construction</subject><subject>Information theory</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkE1LAzEQhoMoWKt_QQJevKzN12Z3j6X4BQUvevAU0iSLW3Y3bSah9N-bpSLiHGbel3kZhgehW0oeKKnrBa0EK2TZyAXn2S0IZYTUZ2j2uzj_oy_RFcCWEJ6rmqHPJR7dAQ8ufnmLfYuNHyGGZGLnx8nrvsfgIkx6SDFlf8Rp3HQanMWb3AG3PuB48MU-bbqI4QjRDXCNLlrdg7v5mXP08fT4vnop1m_Pr6vlujBcilgYWjJJDGPWlDWxsmwpoZpbKzklggvWyNpWhhlKNLWmksJwoTnjxNhSMMvn6P50dxf8PjmIaujAuL7Xo_MJFK1o3TDWCJmjd_-iW5_CmL9TrKyqphSUkpySp5QJHiC4Vu1CN-hwVJSoibiaYKoJpsrEFVUn4vwbbepytw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Ghiu, Iulia</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20120101</creationdate><title>A new method of construction of all sets of mutually unbiased bases for two-qubit systems</title><author>Ghiu, Iulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-c15260c22dc580d65f101a3dd63104342968d7c2c10a1dc764c34a3230cd542d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Construction</topic><topic>Information theory</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghiu, Iulia</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghiu, Iulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method of construction of all sets of mutually unbiased bases for two-qubit systems</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>338</volume><issue>1</issue><spage>12008</spage><epage>6</epage><pages>12008-6</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Mutually unbiased bases are an important tool in many applications of quantum information theory. We present a new algorithm for finding the mutually unbiased bases for two-qubit systems. We derive a system of four equations in the Galois field GF(4) and show that the solutions of this system are sufficient for obtaining the most general set of mutually unbiased bases. Further, our algorithm is applied to an example and we show that there are three possible solutions of the system of four equations, each solution leading to a different set of mutually unbiased bases.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/338/1/012008</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2012-01, Vol.338 (1), p.12008-6
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718922946
source Institute of Physics IOPscience extra; IOP_英国物理学会OA刊; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Construction
Information theory
Mathematical analysis
Physics
Quantum phenomena
Qubits (quantum computing)
title A new method of construction of all sets of mutually unbiased bases for two-qubit systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A25%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20of%20construction%20of%20all%20sets%20of%20mutually%20unbiased%20bases%20for%20two-qubit%20systems&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ghiu,%20Iulia&rft.date=2012-01-01&rft.volume=338&rft.issue=1&rft.spage=12008&rft.epage=6&rft.pages=12008-6&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/338/1/012008&rft_dat=%3Cproquest_cross%3E1718922946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577954110&rft_id=info:pmid/&rfr_iscdi=true