An overview of recent HL-2A experiments
For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after S...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2013-10, Vol.53 (10), p.104009-9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 10 |
container_start_page | 104009 |
container_title | Nuclear fusion |
container_volume | 53 |
creator | Duan, X.R. Ding, X.T. Dong, J.Q. Yan, L.W. Liu, Yi Huang, Y. Song, X.M. Zou, X.L. Xu, M. Yang, Q.W. Liu, D.Q. Rao, J. Xuan, W.M. Chen, L.Y. Mao, W.C. Wang, Q.M. Cao, Z. Li, B. Cao, J.Y. Lei, G.J. Zhang, J.H. Li, X.D. Chen, W. Zhao, K.J. Xiao, W.W. Chen, C.Y. Kong, D.F. Isobe, M. Morita, S. Cheng, J. Chen, S.Y. Cui, C.H. Cui, Z.Y. Deng, W. Dong, Y.B. Feng, B.B. Hong, W.Y. Huang, M. Ji, X.Q. Li, G.S. Li, H.J. Li, Qing Liu, C.H. Peng, J.F. Shi, B.Z. Wang, Y.Q. Yao, L.H. Yao, L.Y. Yu, D.L. Yu, L.M. Yuan, B.S. Zhou, J. Zhou, Y. Zhong, W.L. Tynan, G. Diamond, P. Yu, C.X. Liu, Yong |
description | For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs. |
doi_str_mv | 10.1088/0029-5515/53/10/104009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718921648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718921648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQfaml7Uz-bfJsRS1woIXPYd0k8CWdndN2qrf3iwrXoWBgcfvDfMeIbcIDwhKLQCoLoVAsRBsgZCHA-gzMsOKY8kZledk9gddkquUtgDIkbEZuVt2RX_y8dT6z6IPRfSN7w7Fui7psvBfg4_tPgvpmlwEu0v-5nfPyfvT49tqXdavzy-rZV02rNKHMlCH1Cm24TRIKpRzNgAIIZ2SGryTdqOqLFPgdoPowVnpNWREOx14YHNyP90dYv9x9Olg9m1q_G5nO98fk8EKlaYoucqonNAm9ilFH8yQn7Xx2yCYsRkzhjZjaCPYJI7NZCOdjG0_mG1_jF1O9J_pB6O9YrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718921648</pqid></control><display><type>article</type><title>An overview of recent HL-2A experiments</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Duan, X.R. ; Ding, X.T. ; Dong, J.Q. ; Yan, L.W. ; Liu, Yi ; Huang, Y. ; Song, X.M. ; Zou, X.L. ; Xu, M. ; Yang, Q.W. ; Liu, D.Q. ; Rao, J. ; Xuan, W.M. ; Chen, L.Y. ; Mao, W.C. ; Wang, Q.M. ; Cao, Z. ; Li, B. ; Cao, J.Y. ; Lei, G.J. ; Zhang, J.H. ; Li, X.D. ; Chen, W. ; Zhao, K.J. ; Xiao, W.W. ; Chen, C.Y. ; Kong, D.F. ; Isobe, M. ; Morita, S. ; Cheng, J. ; Chen, S.Y. ; Cui, C.H. ; Cui, Z.Y. ; Deng, W. ; Dong, Y.B. ; Feng, B.B. ; Hong, W.Y. ; Huang, M. ; Ji, X.Q. ; Li, G.S. ; Li, H.J. ; Li, Qing ; Liu, C.H. ; Peng, J.F. ; Shi, B.Z. ; Wang, Y.Q. ; Yao, L.H. ; Yao, L.Y. ; Yu, D.L. ; Yu, L.M. ; Yuan, B.S. ; Zhou, J. ; Zhou, Y. ; Zhong, W.L. ; Tynan, G. ; Diamond, P. ; Yu, C.X. ; Liu, Yong</creator><creatorcontrib>Duan, X.R. ; Ding, X.T. ; Dong, J.Q. ; Yan, L.W. ; Liu, Yi ; Huang, Y. ; Song, X.M. ; Zou, X.L. ; Xu, M. ; Yang, Q.W. ; Liu, D.Q. ; Rao, J. ; Xuan, W.M. ; Chen, L.Y. ; Mao, W.C. ; Wang, Q.M. ; Cao, Z. ; Li, B. ; Cao, J.Y. ; Lei, G.J. ; Zhang, J.H. ; Li, X.D. ; Chen, W. ; Zhao, K.J. ; Xiao, W.W. ; Chen, C.Y. ; Kong, D.F. ; Isobe, M. ; Morita, S. ; Cheng, J. ; Chen, S.Y. ; Cui, C.H. ; Cui, Z.Y. ; Deng, W. ; Dong, Y.B. ; Feng, B.B. ; Hong, W.Y. ; Huang, M. ; Ji, X.Q. ; Li, G.S. ; Li, H.J. ; Li, Qing ; Liu, C.H. ; Peng, J.F. ; Shi, B.Z. ; Wang, Y.Q. ; Yao, L.H. ; Yao, L.Y. ; Yu, D.L. ; Yu, L.M. ; Yuan, B.S. ; Zhou, J. ; Zhou, Y. ; Zhong, W.L. ; Tynan, G. ; Diamond, P. ; Yu, C.X. ; Liu, Yong ; the HL-2A Team</creatorcontrib><description>For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/53/10/104009</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing and International Atomic Energy Agency</publisher><subject>Elm ; Fluid dynamics ; Fluid flow ; Heating ; Shear flow ; Turbulence ; Turbulent flow</subject><ispartof>Nuclear fusion, 2013-10, Vol.53 (10), p.104009-9</ispartof><rights>2013 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</citedby><cites>FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/53/10/104009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Duan, X.R.</creatorcontrib><creatorcontrib>Ding, X.T.</creatorcontrib><creatorcontrib>Dong, J.Q.</creatorcontrib><creatorcontrib>Yan, L.W.</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Song, X.M.</creatorcontrib><creatorcontrib>Zou, X.L.</creatorcontrib><creatorcontrib>Xu, M.</creatorcontrib><creatorcontrib>Yang, Q.W.</creatorcontrib><creatorcontrib>Liu, D.Q.</creatorcontrib><creatorcontrib>Rao, J.</creatorcontrib><creatorcontrib>Xuan, W.M.</creatorcontrib><creatorcontrib>Chen, L.Y.</creatorcontrib><creatorcontrib>Mao, W.C.</creatorcontrib><creatorcontrib>Wang, Q.M.</creatorcontrib><creatorcontrib>Cao, Z.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Cao, J.Y.</creatorcontrib><creatorcontrib>Lei, G.J.</creatorcontrib><creatorcontrib>Zhang, J.H.</creatorcontrib><creatorcontrib>Li, X.D.</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Zhao, K.J.</creatorcontrib><creatorcontrib>Xiao, W.W.</creatorcontrib><creatorcontrib>Chen, C.Y.</creatorcontrib><creatorcontrib>Kong, D.F.</creatorcontrib><creatorcontrib>Isobe, M.</creatorcontrib><creatorcontrib>Morita, S.</creatorcontrib><creatorcontrib>Cheng, J.</creatorcontrib><creatorcontrib>Chen, S.Y.</creatorcontrib><creatorcontrib>Cui, C.H.</creatorcontrib><creatorcontrib>Cui, Z.Y.</creatorcontrib><creatorcontrib>Deng, W.</creatorcontrib><creatorcontrib>Dong, Y.B.</creatorcontrib><creatorcontrib>Feng, B.B.</creatorcontrib><creatorcontrib>Hong, W.Y.</creatorcontrib><creatorcontrib>Huang, M.</creatorcontrib><creatorcontrib>Ji, X.Q.</creatorcontrib><creatorcontrib>Li, G.S.</creatorcontrib><creatorcontrib>Li, H.J.</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Liu, C.H.</creatorcontrib><creatorcontrib>Peng, J.F.</creatorcontrib><creatorcontrib>Shi, B.Z.</creatorcontrib><creatorcontrib>Wang, Y.Q.</creatorcontrib><creatorcontrib>Yao, L.H.</creatorcontrib><creatorcontrib>Yao, L.Y.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><creatorcontrib>Yu, L.M.</creatorcontrib><creatorcontrib>Yuan, B.S.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Zhong, W.L.</creatorcontrib><creatorcontrib>Tynan, G.</creatorcontrib><creatorcontrib>Diamond, P.</creatorcontrib><creatorcontrib>Yu, C.X.</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>the HL-2A Team</creatorcontrib><title>An overview of recent HL-2A experiments</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.</description><subject>Elm</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heating</subject><subject>Shear flow</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQfaml7Uz-bfJsRS1woIXPYd0k8CWdndN2qrf3iwrXoWBgcfvDfMeIbcIDwhKLQCoLoVAsRBsgZCHA-gzMsOKY8kZledk9gddkquUtgDIkbEZuVt2RX_y8dT6z6IPRfSN7w7Fui7psvBfg4_tPgvpmlwEu0v-5nfPyfvT49tqXdavzy-rZV02rNKHMlCH1Cm24TRIKpRzNgAIIZ2SGryTdqOqLFPgdoPowVnpNWREOx14YHNyP90dYv9x9Olg9m1q_G5nO98fk8EKlaYoucqonNAm9ilFH8yQn7Xx2yCYsRkzhjZjaCPYJI7NZCOdjG0_mG1_jF1O9J_pB6O9YrQ</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Duan, X.R.</creator><creator>Ding, X.T.</creator><creator>Dong, J.Q.</creator><creator>Yan, L.W.</creator><creator>Liu, Yi</creator><creator>Huang, Y.</creator><creator>Song, X.M.</creator><creator>Zou, X.L.</creator><creator>Xu, M.</creator><creator>Yang, Q.W.</creator><creator>Liu, D.Q.</creator><creator>Rao, J.</creator><creator>Xuan, W.M.</creator><creator>Chen, L.Y.</creator><creator>Mao, W.C.</creator><creator>Wang, Q.M.</creator><creator>Cao, Z.</creator><creator>Li, B.</creator><creator>Cao, J.Y.</creator><creator>Lei, G.J.</creator><creator>Zhang, J.H.</creator><creator>Li, X.D.</creator><creator>Chen, W.</creator><creator>Zhao, K.J.</creator><creator>Xiao, W.W.</creator><creator>Chen, C.Y.</creator><creator>Kong, D.F.</creator><creator>Isobe, M.</creator><creator>Morita, S.</creator><creator>Cheng, J.</creator><creator>Chen, S.Y.</creator><creator>Cui, C.H.</creator><creator>Cui, Z.Y.</creator><creator>Deng, W.</creator><creator>Dong, Y.B.</creator><creator>Feng, B.B.</creator><creator>Hong, W.Y.</creator><creator>Huang, M.</creator><creator>Ji, X.Q.</creator><creator>Li, G.S.</creator><creator>Li, H.J.</creator><creator>Li, Qing</creator><creator>Liu, C.H.</creator><creator>Peng, J.F.</creator><creator>Shi, B.Z.</creator><creator>Wang, Y.Q.</creator><creator>Yao, L.H.</creator><creator>Yao, L.Y.</creator><creator>Yu, D.L.</creator><creator>Yu, L.M.</creator><creator>Yuan, B.S.</creator><creator>Zhou, J.</creator><creator>Zhou, Y.</creator><creator>Zhong, W.L.</creator><creator>Tynan, G.</creator><creator>Diamond, P.</creator><creator>Yu, C.X.</creator><creator>Liu, Yong</creator><general>IOP Publishing and International Atomic Energy Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201310</creationdate><title>An overview of recent HL-2A experiments</title><author>Duan, X.R. ; Ding, X.T. ; Dong, J.Q. ; Yan, L.W. ; Liu, Yi ; Huang, Y. ; Song, X.M. ; Zou, X.L. ; Xu, M. ; Yang, Q.W. ; Liu, D.Q. ; Rao, J. ; Xuan, W.M. ; Chen, L.Y. ; Mao, W.C. ; Wang, Q.M. ; Cao, Z. ; Li, B. ; Cao, J.Y. ; Lei, G.J. ; Zhang, J.H. ; Li, X.D. ; Chen, W. ; Zhao, K.J. ; Xiao, W.W. ; Chen, C.Y. ; Kong, D.F. ; Isobe, M. ; Morita, S. ; Cheng, J. ; Chen, S.Y. ; Cui, C.H. ; Cui, Z.Y. ; Deng, W. ; Dong, Y.B. ; Feng, B.B. ; Hong, W.Y. ; Huang, M. ; Ji, X.Q. ; Li, G.S. ; Li, H.J. ; Li, Qing ; Liu, C.H. ; Peng, J.F. ; Shi, B.Z. ; Wang, Y.Q. ; Yao, L.H. ; Yao, L.Y. ; Yu, D.L. ; Yu, L.M. ; Yuan, B.S. ; Zhou, J. ; Zhou, Y. ; Zhong, W.L. ; Tynan, G. ; Diamond, P. ; Yu, C.X. ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Elm</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heating</topic><topic>Shear flow</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, X.R.</creatorcontrib><creatorcontrib>Ding, X.T.</creatorcontrib><creatorcontrib>Dong, J.Q.</creatorcontrib><creatorcontrib>Yan, L.W.</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Song, X.M.</creatorcontrib><creatorcontrib>Zou, X.L.</creatorcontrib><creatorcontrib>Xu, M.</creatorcontrib><creatorcontrib>Yang, Q.W.</creatorcontrib><creatorcontrib>Liu, D.Q.</creatorcontrib><creatorcontrib>Rao, J.</creatorcontrib><creatorcontrib>Xuan, W.M.</creatorcontrib><creatorcontrib>Chen, L.Y.</creatorcontrib><creatorcontrib>Mao, W.C.</creatorcontrib><creatorcontrib>Wang, Q.M.</creatorcontrib><creatorcontrib>Cao, Z.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Cao, J.Y.</creatorcontrib><creatorcontrib>Lei, G.J.</creatorcontrib><creatorcontrib>Zhang, J.H.</creatorcontrib><creatorcontrib>Li, X.D.</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Zhao, K.J.</creatorcontrib><creatorcontrib>Xiao, W.W.</creatorcontrib><creatorcontrib>Chen, C.Y.</creatorcontrib><creatorcontrib>Kong, D.F.</creatorcontrib><creatorcontrib>Isobe, M.</creatorcontrib><creatorcontrib>Morita, S.</creatorcontrib><creatorcontrib>Cheng, J.</creatorcontrib><creatorcontrib>Chen, S.Y.</creatorcontrib><creatorcontrib>Cui, C.H.</creatorcontrib><creatorcontrib>Cui, Z.Y.</creatorcontrib><creatorcontrib>Deng, W.</creatorcontrib><creatorcontrib>Dong, Y.B.</creatorcontrib><creatorcontrib>Feng, B.B.</creatorcontrib><creatorcontrib>Hong, W.Y.</creatorcontrib><creatorcontrib>Huang, M.</creatorcontrib><creatorcontrib>Ji, X.Q.</creatorcontrib><creatorcontrib>Li, G.S.</creatorcontrib><creatorcontrib>Li, H.J.</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Liu, C.H.</creatorcontrib><creatorcontrib>Peng, J.F.</creatorcontrib><creatorcontrib>Shi, B.Z.</creatorcontrib><creatorcontrib>Wang, Y.Q.</creatorcontrib><creatorcontrib>Yao, L.H.</creatorcontrib><creatorcontrib>Yao, L.Y.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><creatorcontrib>Yu, L.M.</creatorcontrib><creatorcontrib>Yuan, B.S.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Zhong, W.L.</creatorcontrib><creatorcontrib>Tynan, G.</creatorcontrib><creatorcontrib>Diamond, P.</creatorcontrib><creatorcontrib>Yu, C.X.</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>the HL-2A Team</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, X.R.</au><au>Ding, X.T.</au><au>Dong, J.Q.</au><au>Yan, L.W.</au><au>Liu, Yi</au><au>Huang, Y.</au><au>Song, X.M.</au><au>Zou, X.L.</au><au>Xu, M.</au><au>Yang, Q.W.</au><au>Liu, D.Q.</au><au>Rao, J.</au><au>Xuan, W.M.</au><au>Chen, L.Y.</au><au>Mao, W.C.</au><au>Wang, Q.M.</au><au>Cao, Z.</au><au>Li, B.</au><au>Cao, J.Y.</au><au>Lei, G.J.</au><au>Zhang, J.H.</au><au>Li, X.D.</au><au>Chen, W.</au><au>Zhao, K.J.</au><au>Xiao, W.W.</au><au>Chen, C.Y.</au><au>Kong, D.F.</au><au>Isobe, M.</au><au>Morita, S.</au><au>Cheng, J.</au><au>Chen, S.Y.</au><au>Cui, C.H.</au><au>Cui, Z.Y.</au><au>Deng, W.</au><au>Dong, Y.B.</au><au>Feng, B.B.</au><au>Hong, W.Y.</au><au>Huang, M.</au><au>Ji, X.Q.</au><au>Li, G.S.</au><au>Li, H.J.</au><au>Li, Qing</au><au>Liu, C.H.</au><au>Peng, J.F.</au><au>Shi, B.Z.</au><au>Wang, Y.Q.</au><au>Yao, L.H.</au><au>Yao, L.Y.</au><au>Yu, D.L.</au><au>Yu, L.M.</au><au>Yuan, B.S.</au><au>Zhou, J.</au><au>Zhou, Y.</au><au>Zhong, W.L.</au><au>Tynan, G.</au><au>Diamond, P.</au><au>Yu, C.X.</au><au>Liu, Yong</au><aucorp>the HL-2A Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of recent HL-2A experiments</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2013-10</date><risdate>2013</risdate><volume>53</volume><issue>10</issue><spage>104009</spage><epage>9</epage><pages>104009-9</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.</abstract><pub>IOP Publishing and International Atomic Energy Agency</pub><doi>10.1088/0029-5515/53/10/104009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2013-10, Vol.53 (10), p.104009-9 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718921648 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Elm Fluid dynamics Fluid flow Heating Shear flow Turbulence Turbulent flow |
title | An overview of recent HL-2A experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20recent%20HL-2A%20experiments&rft.jtitle=Nuclear%20fusion&rft.au=Duan,%20X.R.&rft.aucorp=the%20HL-2A%20Team&rft.date=2013-10&rft.volume=53&rft.issue=10&rft.spage=104009&rft.epage=9&rft.pages=104009-9&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/53/10/104009&rft_dat=%3Cproquest_cross%3E1718921648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718921648&rft_id=info:pmid/&rfr_iscdi=true |