An overview of recent HL-2A experiments

For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2013-10, Vol.53 (10), p.104009-9
Hauptverfasser: Duan, X.R., Ding, X.T., Dong, J.Q., Yan, L.W., Liu, Yi, Huang, Y., Song, X.M., Zou, X.L., Xu, M., Yang, Q.W., Liu, D.Q., Rao, J., Xuan, W.M., Chen, L.Y., Mao, W.C., Wang, Q.M., Cao, Z., Li, B., Cao, J.Y., Lei, G.J., Zhang, J.H., Li, X.D., Chen, W., Zhao, K.J., Xiao, W.W., Chen, C.Y., Kong, D.F., Isobe, M., Morita, S., Cheng, J., Chen, S.Y., Cui, C.H., Cui, Z.Y., Deng, W., Dong, Y.B., Feng, B.B., Hong, W.Y., Huang, M., Ji, X.Q., Li, G.S., Li, H.J., Li, Qing, Liu, C.H., Peng, J.F., Shi, B.Z., Wang, Y.Q., Yao, L.H., Yao, L.Y., Yu, D.L., Yu, L.M., Yuan, B.S., Zhou, J., Zhou, Y., Zhong, W.L., Tynan, G., Diamond, P., Yu, C.X., Liu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 10
container_start_page 104009
container_title Nuclear fusion
container_volume 53
creator Duan, X.R.
Ding, X.T.
Dong, J.Q.
Yan, L.W.
Liu, Yi
Huang, Y.
Song, X.M.
Zou, X.L.
Xu, M.
Yang, Q.W.
Liu, D.Q.
Rao, J.
Xuan, W.M.
Chen, L.Y.
Mao, W.C.
Wang, Q.M.
Cao, Z.
Li, B.
Cao, J.Y.
Lei, G.J.
Zhang, J.H.
Li, X.D.
Chen, W.
Zhao, K.J.
Xiao, W.W.
Chen, C.Y.
Kong, D.F.
Isobe, M.
Morita, S.
Cheng, J.
Chen, S.Y.
Cui, C.H.
Cui, Z.Y.
Deng, W.
Dong, Y.B.
Feng, B.B.
Hong, W.Y.
Huang, M.
Ji, X.Q.
Li, G.S.
Li, H.J.
Li, Qing
Liu, C.H.
Peng, J.F.
Shi, B.Z.
Wang, Y.Q.
Yao, L.H.
Yao, L.Y.
Yu, D.L.
Yu, L.M.
Yuan, B.S.
Zhou, J.
Zhou, Y.
Zhong, W.L.
Tynan, G.
Diamond, P.
Yu, C.X.
Liu, Yong
description For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.
doi_str_mv 10.1088/0029-5515/53/10/104009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718921648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718921648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQfaml7Uz-bfJsRS1woIXPYd0k8CWdndN2qrf3iwrXoWBgcfvDfMeIbcIDwhKLQCoLoVAsRBsgZCHA-gzMsOKY8kZledk9gddkquUtgDIkbEZuVt2RX_y8dT6z6IPRfSN7w7Fui7psvBfg4_tPgvpmlwEu0v-5nfPyfvT49tqXdavzy-rZV02rNKHMlCH1Cm24TRIKpRzNgAIIZ2SGryTdqOqLFPgdoPowVnpNWREOx14YHNyP90dYv9x9Olg9m1q_G5nO98fk8EKlaYoucqonNAm9ilFH8yQn7Xx2yCYsRkzhjZjaCPYJI7NZCOdjG0_mG1_jF1O9J_pB6O9YrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718921648</pqid></control><display><type>article</type><title>An overview of recent HL-2A experiments</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Duan, X.R. ; Ding, X.T. ; Dong, J.Q. ; Yan, L.W. ; Liu, Yi ; Huang, Y. ; Song, X.M. ; Zou, X.L. ; Xu, M. ; Yang, Q.W. ; Liu, D.Q. ; Rao, J. ; Xuan, W.M. ; Chen, L.Y. ; Mao, W.C. ; Wang, Q.M. ; Cao, Z. ; Li, B. ; Cao, J.Y. ; Lei, G.J. ; Zhang, J.H. ; Li, X.D. ; Chen, W. ; Zhao, K.J. ; Xiao, W.W. ; Chen, C.Y. ; Kong, D.F. ; Isobe, M. ; Morita, S. ; Cheng, J. ; Chen, S.Y. ; Cui, C.H. ; Cui, Z.Y. ; Deng, W. ; Dong, Y.B. ; Feng, B.B. ; Hong, W.Y. ; Huang, M. ; Ji, X.Q. ; Li, G.S. ; Li, H.J. ; Li, Qing ; Liu, C.H. ; Peng, J.F. ; Shi, B.Z. ; Wang, Y.Q. ; Yao, L.H. ; Yao, L.Y. ; Yu, D.L. ; Yu, L.M. ; Yuan, B.S. ; Zhou, J. ; Zhou, Y. ; Zhong, W.L. ; Tynan, G. ; Diamond, P. ; Yu, C.X. ; Liu, Yong</creator><creatorcontrib>Duan, X.R. ; Ding, X.T. ; Dong, J.Q. ; Yan, L.W. ; Liu, Yi ; Huang, Y. ; Song, X.M. ; Zou, X.L. ; Xu, M. ; Yang, Q.W. ; Liu, D.Q. ; Rao, J. ; Xuan, W.M. ; Chen, L.Y. ; Mao, W.C. ; Wang, Q.M. ; Cao, Z. ; Li, B. ; Cao, J.Y. ; Lei, G.J. ; Zhang, J.H. ; Li, X.D. ; Chen, W. ; Zhao, K.J. ; Xiao, W.W. ; Chen, C.Y. ; Kong, D.F. ; Isobe, M. ; Morita, S. ; Cheng, J. ; Chen, S.Y. ; Cui, C.H. ; Cui, Z.Y. ; Deng, W. ; Dong, Y.B. ; Feng, B.B. ; Hong, W.Y. ; Huang, M. ; Ji, X.Q. ; Li, G.S. ; Li, H.J. ; Li, Qing ; Liu, C.H. ; Peng, J.F. ; Shi, B.Z. ; Wang, Y.Q. ; Yao, L.H. ; Yao, L.Y. ; Yu, D.L. ; Yu, L.M. ; Yuan, B.S. ; Zhou, J. ; Zhou, Y. ; Zhong, W.L. ; Tynan, G. ; Diamond, P. ; Yu, C.X. ; Liu, Yong ; the HL-2A Team</creatorcontrib><description>For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/53/10/104009</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>IOP Publishing and International Atomic Energy Agency</publisher><subject>Elm ; Fluid dynamics ; Fluid flow ; Heating ; Shear flow ; Turbulence ; Turbulent flow</subject><ispartof>Nuclear fusion, 2013-10, Vol.53 (10), p.104009-9</ispartof><rights>2013 IAEA, Vienna</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</citedby><cites>FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/53/10/104009/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids></links><search><creatorcontrib>Duan, X.R.</creatorcontrib><creatorcontrib>Ding, X.T.</creatorcontrib><creatorcontrib>Dong, J.Q.</creatorcontrib><creatorcontrib>Yan, L.W.</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Song, X.M.</creatorcontrib><creatorcontrib>Zou, X.L.</creatorcontrib><creatorcontrib>Xu, M.</creatorcontrib><creatorcontrib>Yang, Q.W.</creatorcontrib><creatorcontrib>Liu, D.Q.</creatorcontrib><creatorcontrib>Rao, J.</creatorcontrib><creatorcontrib>Xuan, W.M.</creatorcontrib><creatorcontrib>Chen, L.Y.</creatorcontrib><creatorcontrib>Mao, W.C.</creatorcontrib><creatorcontrib>Wang, Q.M.</creatorcontrib><creatorcontrib>Cao, Z.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Cao, J.Y.</creatorcontrib><creatorcontrib>Lei, G.J.</creatorcontrib><creatorcontrib>Zhang, J.H.</creatorcontrib><creatorcontrib>Li, X.D.</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Zhao, K.J.</creatorcontrib><creatorcontrib>Xiao, W.W.</creatorcontrib><creatorcontrib>Chen, C.Y.</creatorcontrib><creatorcontrib>Kong, D.F.</creatorcontrib><creatorcontrib>Isobe, M.</creatorcontrib><creatorcontrib>Morita, S.</creatorcontrib><creatorcontrib>Cheng, J.</creatorcontrib><creatorcontrib>Chen, S.Y.</creatorcontrib><creatorcontrib>Cui, C.H.</creatorcontrib><creatorcontrib>Cui, Z.Y.</creatorcontrib><creatorcontrib>Deng, W.</creatorcontrib><creatorcontrib>Dong, Y.B.</creatorcontrib><creatorcontrib>Feng, B.B.</creatorcontrib><creatorcontrib>Hong, W.Y.</creatorcontrib><creatorcontrib>Huang, M.</creatorcontrib><creatorcontrib>Ji, X.Q.</creatorcontrib><creatorcontrib>Li, G.S.</creatorcontrib><creatorcontrib>Li, H.J.</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Liu, C.H.</creatorcontrib><creatorcontrib>Peng, J.F.</creatorcontrib><creatorcontrib>Shi, B.Z.</creatorcontrib><creatorcontrib>Wang, Y.Q.</creatorcontrib><creatorcontrib>Yao, L.H.</creatorcontrib><creatorcontrib>Yao, L.Y.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><creatorcontrib>Yu, L.M.</creatorcontrib><creatorcontrib>Yuan, B.S.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Zhong, W.L.</creatorcontrib><creatorcontrib>Tynan, G.</creatorcontrib><creatorcontrib>Diamond, P.</creatorcontrib><creatorcontrib>Yu, C.X.</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>the HL-2A Team</creatorcontrib><title>An overview of recent HL-2A experiments</title><title>Nuclear fusion</title><addtitle>NF</addtitle><addtitle>Nucl. Fusion</addtitle><description>For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.</description><subject>Elm</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Heating</subject><subject>Shear flow</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQfaml7Uz-bfJsRS1woIXPYd0k8CWdndN2qrf3iwrXoWBgcfvDfMeIbcIDwhKLQCoLoVAsRBsgZCHA-gzMsOKY8kZledk9gddkquUtgDIkbEZuVt2RX_y8dT6z6IPRfSN7w7Fui7psvBfg4_tPgvpmlwEu0v-5nfPyfvT49tqXdavzy-rZV02rNKHMlCH1Cm24TRIKpRzNgAIIZ2SGryTdqOqLFPgdoPowVnpNWREOx14YHNyP90dYv9x9Olg9m1q_G5nO98fk8EKlaYoucqonNAm9ilFH8yQn7Xx2yCYsRkzhjZjaCPYJI7NZCOdjG0_mG1_jF1O9J_pB6O9YrQ</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Duan, X.R.</creator><creator>Ding, X.T.</creator><creator>Dong, J.Q.</creator><creator>Yan, L.W.</creator><creator>Liu, Yi</creator><creator>Huang, Y.</creator><creator>Song, X.M.</creator><creator>Zou, X.L.</creator><creator>Xu, M.</creator><creator>Yang, Q.W.</creator><creator>Liu, D.Q.</creator><creator>Rao, J.</creator><creator>Xuan, W.M.</creator><creator>Chen, L.Y.</creator><creator>Mao, W.C.</creator><creator>Wang, Q.M.</creator><creator>Cao, Z.</creator><creator>Li, B.</creator><creator>Cao, J.Y.</creator><creator>Lei, G.J.</creator><creator>Zhang, J.H.</creator><creator>Li, X.D.</creator><creator>Chen, W.</creator><creator>Zhao, K.J.</creator><creator>Xiao, W.W.</creator><creator>Chen, C.Y.</creator><creator>Kong, D.F.</creator><creator>Isobe, M.</creator><creator>Morita, S.</creator><creator>Cheng, J.</creator><creator>Chen, S.Y.</creator><creator>Cui, C.H.</creator><creator>Cui, Z.Y.</creator><creator>Deng, W.</creator><creator>Dong, Y.B.</creator><creator>Feng, B.B.</creator><creator>Hong, W.Y.</creator><creator>Huang, M.</creator><creator>Ji, X.Q.</creator><creator>Li, G.S.</creator><creator>Li, H.J.</creator><creator>Li, Qing</creator><creator>Liu, C.H.</creator><creator>Peng, J.F.</creator><creator>Shi, B.Z.</creator><creator>Wang, Y.Q.</creator><creator>Yao, L.H.</creator><creator>Yao, L.Y.</creator><creator>Yu, D.L.</creator><creator>Yu, L.M.</creator><creator>Yuan, B.S.</creator><creator>Zhou, J.</creator><creator>Zhou, Y.</creator><creator>Zhong, W.L.</creator><creator>Tynan, G.</creator><creator>Diamond, P.</creator><creator>Yu, C.X.</creator><creator>Liu, Yong</creator><general>IOP Publishing and International Atomic Energy Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201310</creationdate><title>An overview of recent HL-2A experiments</title><author>Duan, X.R. ; Ding, X.T. ; Dong, J.Q. ; Yan, L.W. ; Liu, Yi ; Huang, Y. ; Song, X.M. ; Zou, X.L. ; Xu, M. ; Yang, Q.W. ; Liu, D.Q. ; Rao, J. ; Xuan, W.M. ; Chen, L.Y. ; Mao, W.C. ; Wang, Q.M. ; Cao, Z. ; Li, B. ; Cao, J.Y. ; Lei, G.J. ; Zhang, J.H. ; Li, X.D. ; Chen, W. ; Zhao, K.J. ; Xiao, W.W. ; Chen, C.Y. ; Kong, D.F. ; Isobe, M. ; Morita, S. ; Cheng, J. ; Chen, S.Y. ; Cui, C.H. ; Cui, Z.Y. ; Deng, W. ; Dong, Y.B. ; Feng, B.B. ; Hong, W.Y. ; Huang, M. ; Ji, X.Q. ; Li, G.S. ; Li, H.J. ; Li, Qing ; Liu, C.H. ; Peng, J.F. ; Shi, B.Z. ; Wang, Y.Q. ; Yao, L.H. ; Yao, L.Y. ; Yu, D.L. ; Yu, L.M. ; Yuan, B.S. ; Zhou, J. ; Zhou, Y. ; Zhong, W.L. ; Tynan, G. ; Diamond, P. ; Yu, C.X. ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-f2d12d83b42f6258ddaf00556d8690ed6ab8758d204ab11e0da6e900059d9f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Elm</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Heating</topic><topic>Shear flow</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, X.R.</creatorcontrib><creatorcontrib>Ding, X.T.</creatorcontrib><creatorcontrib>Dong, J.Q.</creatorcontrib><creatorcontrib>Yan, L.W.</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Huang, Y.</creatorcontrib><creatorcontrib>Song, X.M.</creatorcontrib><creatorcontrib>Zou, X.L.</creatorcontrib><creatorcontrib>Xu, M.</creatorcontrib><creatorcontrib>Yang, Q.W.</creatorcontrib><creatorcontrib>Liu, D.Q.</creatorcontrib><creatorcontrib>Rao, J.</creatorcontrib><creatorcontrib>Xuan, W.M.</creatorcontrib><creatorcontrib>Chen, L.Y.</creatorcontrib><creatorcontrib>Mao, W.C.</creatorcontrib><creatorcontrib>Wang, Q.M.</creatorcontrib><creatorcontrib>Cao, Z.</creatorcontrib><creatorcontrib>Li, B.</creatorcontrib><creatorcontrib>Cao, J.Y.</creatorcontrib><creatorcontrib>Lei, G.J.</creatorcontrib><creatorcontrib>Zhang, J.H.</creatorcontrib><creatorcontrib>Li, X.D.</creatorcontrib><creatorcontrib>Chen, W.</creatorcontrib><creatorcontrib>Zhao, K.J.</creatorcontrib><creatorcontrib>Xiao, W.W.</creatorcontrib><creatorcontrib>Chen, C.Y.</creatorcontrib><creatorcontrib>Kong, D.F.</creatorcontrib><creatorcontrib>Isobe, M.</creatorcontrib><creatorcontrib>Morita, S.</creatorcontrib><creatorcontrib>Cheng, J.</creatorcontrib><creatorcontrib>Chen, S.Y.</creatorcontrib><creatorcontrib>Cui, C.H.</creatorcontrib><creatorcontrib>Cui, Z.Y.</creatorcontrib><creatorcontrib>Deng, W.</creatorcontrib><creatorcontrib>Dong, Y.B.</creatorcontrib><creatorcontrib>Feng, B.B.</creatorcontrib><creatorcontrib>Hong, W.Y.</creatorcontrib><creatorcontrib>Huang, M.</creatorcontrib><creatorcontrib>Ji, X.Q.</creatorcontrib><creatorcontrib>Li, G.S.</creatorcontrib><creatorcontrib>Li, H.J.</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Liu, C.H.</creatorcontrib><creatorcontrib>Peng, J.F.</creatorcontrib><creatorcontrib>Shi, B.Z.</creatorcontrib><creatorcontrib>Wang, Y.Q.</creatorcontrib><creatorcontrib>Yao, L.H.</creatorcontrib><creatorcontrib>Yao, L.Y.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><creatorcontrib>Yu, L.M.</creatorcontrib><creatorcontrib>Yuan, B.S.</creatorcontrib><creatorcontrib>Zhou, J.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Zhong, W.L.</creatorcontrib><creatorcontrib>Tynan, G.</creatorcontrib><creatorcontrib>Diamond, P.</creatorcontrib><creatorcontrib>Yu, C.X.</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><creatorcontrib>the HL-2A Team</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, X.R.</au><au>Ding, X.T.</au><au>Dong, J.Q.</au><au>Yan, L.W.</au><au>Liu, Yi</au><au>Huang, Y.</au><au>Song, X.M.</au><au>Zou, X.L.</au><au>Xu, M.</au><au>Yang, Q.W.</au><au>Liu, D.Q.</au><au>Rao, J.</au><au>Xuan, W.M.</au><au>Chen, L.Y.</au><au>Mao, W.C.</au><au>Wang, Q.M.</au><au>Cao, Z.</au><au>Li, B.</au><au>Cao, J.Y.</au><au>Lei, G.J.</au><au>Zhang, J.H.</au><au>Li, X.D.</au><au>Chen, W.</au><au>Zhao, K.J.</au><au>Xiao, W.W.</au><au>Chen, C.Y.</au><au>Kong, D.F.</au><au>Isobe, M.</au><au>Morita, S.</au><au>Cheng, J.</au><au>Chen, S.Y.</au><au>Cui, C.H.</au><au>Cui, Z.Y.</au><au>Deng, W.</au><au>Dong, Y.B.</au><au>Feng, B.B.</au><au>Hong, W.Y.</au><au>Huang, M.</au><au>Ji, X.Q.</au><au>Li, G.S.</au><au>Li, H.J.</au><au>Li, Qing</au><au>Liu, C.H.</au><au>Peng, J.F.</au><au>Shi, B.Z.</au><au>Wang, Y.Q.</au><au>Yao, L.H.</au><au>Yao, L.Y.</au><au>Yu, D.L.</au><au>Yu, L.M.</au><au>Yuan, B.S.</au><au>Zhou, J.</au><au>Zhou, Y.</au><au>Zhong, W.L.</au><au>Tynan, G.</au><au>Diamond, P.</au><au>Yu, C.X.</au><au>Liu, Yong</au><aucorp>the HL-2A Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of recent HL-2A experiments</atitle><jtitle>Nuclear fusion</jtitle><stitle>NF</stitle><addtitle>Nucl. Fusion</addtitle><date>2013-10</date><risdate>2013</risdate><volume>53</volume><issue>10</issue><spage>104009</spage><epage>9</epage><pages>104009-9</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>For the first time supersonic molecular beam injection (SMBI) and cluster jet injection (CJI) were applied to mitigate edge-localized modes (ELMs) in HL-2A successfully. The ELM frequency increased by a factor of 2-3 and the heat flux on the divertor target plates decreased by 50% on average after SMBI or CJI. Energetic particle induced modes were observed in different frequency ranges with high-power electron cyclotron resonance heating (ECRH). The high frequency (200-350 kHz) of the modes with a relatively small amplitude was close to the gap frequency of the toroidicity-induced Alfvén eigenmode. The coexistent multi-mode magnetic structures in the high-temperature and low-collision plasma could affect the plasma transport dramatically. Long-lived saturated ideal magnetohydrodynamic instabilities during strong neutral beam injection heating could be suppressed by high-power ECRH. The absolute rate of nonlinear energy transfer between turbulence and zonal flows was measured and the secondary mode competition between low-frequency (LF) zonal flows (ZFs) and geodesic acoustic modes (GAMs) was identified, which demonstrated that ZFs played an important role in the L-H transition. The spontaneously generated E × B shear flow was identified to be responsible for the generation of a large-scale coherent structure (LSCS), which provided unambiguous experimental evidence for the LSCS generation mechanism. New meso-scale electric potential fluctuations (MSEFs) at frequency f ∼ 10.5 kHz with two components of n = 0 and m/n = 6/2 were also identified in the edge plasmas for the first time. The MSEFs coexisted and interacted with magnetic islands of m/n = 6/2, turbulence and LF ZFs.</abstract><pub>IOP Publishing and International Atomic Energy Agency</pub><doi>10.1088/0029-5515/53/10/104009</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2013-10, Vol.53 (10), p.104009-9
issn 0029-5515
1741-4326
language eng
recordid cdi_proquest_miscellaneous_1718921648
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Elm
Fluid dynamics
Fluid flow
Heating
Shear flow
Turbulence
Turbulent flow
title An overview of recent HL-2A experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20recent%20HL-2A%20experiments&rft.jtitle=Nuclear%20fusion&rft.au=Duan,%20X.R.&rft.aucorp=the%20HL-2A%20Team&rft.date=2013-10&rft.volume=53&rft.issue=10&rft.spage=104009&rft.epage=9&rft.pages=104009-9&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/53/10/104009&rft_dat=%3Cproquest_cross%3E1718921648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718921648&rft_id=info:pmid/&rfr_iscdi=true