Mechanical characterization and nonlinear analysis of a piezoelectric laminated micro-switch under electrostatic actuation

In this paper, a comprehensive model of a piezoelectric laminated micro-switch subjected to electrostatic excitation, which accounts for the nonlinearities due to inertia, curvature, and electrostatic forces, is presented. Dynamic equations of this model is derived by the Lagrange method and solved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2015-08, Vol.229 (4), p.299-308
Hauptverfasser: Raeisifard, Hamed, Bahrami, Mansour Nikkhah, Yousefi-Koma, Aghil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 4
container_start_page 299
container_title Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications
container_volume 229
creator Raeisifard, Hamed
Bahrami, Mansour Nikkhah
Yousefi-Koma, Aghil
description In this paper, a comprehensive model of a piezoelectric laminated micro-switch subjected to electrostatic excitation, which accounts for the nonlinearities due to inertia, curvature, and electrostatic forces, is presented. Dynamic equations of this model is derived by the Lagrange method and solved by the Galerkin method using five modes. The laminated micro-switch is assumed as an elastic Euler–Bernoulli beam, and the piezoelectric material is bonded onto a portion of it. The electrostatic actuation results are compared with other existing experimental results. Whereas the major drawback of electrostatically actuated micro-switches is the high driving voltage, using the piezoelectric materials in these systems can provide less driving voltage. The effect of variation in the length, thickness, and applying voltage of the piezoelectric materials on mechanical characterizations is discussed. The aim of this work is design and control of a micro-switch using three different methods: the softening effect due to electrostatic actuation, the hardening effect due to piezoelectric materials, and varying the length and thickness of the piezoelectric materials. Also, this model can be used to design an actuator-sensor smart micro device.
doi_str_mv 10.1177/1464420713513447
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718921482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1464420713513447</sage_id><sourcerecordid>3764835611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-378c31baac2be01d9817e528a5bf2a400b4c6944330dc7e80b7dfe8449064de93</originalsourceid><addsrcrecordid>eNp1kc1LxDAQxYMouK7ePQa8eKlOmmzTHkX8AsWLnss0nWqkm6xJi-z-9aauB1nwNDO833vDMIydCrgQQutLoQqlctBCLoRUSu-xWQ5KZBJ0sc9mk5xN-iE7ivEDAIQGPWObJzLv6KzBnqcmoBko2A0O1juOruXOu946wpAm7NfRRu47jnxlaeOpJzMEa3iPS-twoJYvrQk-i192MO98dC0FvqV8HFKq4WnD-BN_zA467COd_NY5e729ebm-zx6f7x6urx4zI1U-ZFKXRooG0eQNgWirUmha5CUumi5HBdAoU1RKSQmt0VRCo9uOSqUqKFRLlZyz823uKvjPkeJQL2001PfoyI-xFlqUVS5UmSf0bAf98GNId08UgKy0KHSiYEulS2MM1NWrYJcY1rWAenpGvfuMZMm2lohv9Cf0P_4bE4WLHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700397167</pqid></control><display><type>article</type><title>Mechanical characterization and nonlinear analysis of a piezoelectric laminated micro-switch under electrostatic actuation</title><source>SAGE Complete A-Z List</source><creator>Raeisifard, Hamed ; Bahrami, Mansour Nikkhah ; Yousefi-Koma, Aghil</creator><creatorcontrib>Raeisifard, Hamed ; Bahrami, Mansour Nikkhah ; Yousefi-Koma, Aghil</creatorcontrib><description>In this paper, a comprehensive model of a piezoelectric laminated micro-switch subjected to electrostatic excitation, which accounts for the nonlinearities due to inertia, curvature, and electrostatic forces, is presented. Dynamic equations of this model is derived by the Lagrange method and solved by the Galerkin method using five modes. The laminated micro-switch is assumed as an elastic Euler–Bernoulli beam, and the piezoelectric material is bonded onto a portion of it. The electrostatic actuation results are compared with other existing experimental results. Whereas the major drawback of electrostatically actuated micro-switches is the high driving voltage, using the piezoelectric materials in these systems can provide less driving voltage. The effect of variation in the length, thickness, and applying voltage of the piezoelectric materials on mechanical characterizations is discussed. The aim of this work is design and control of a micro-switch using three different methods: the softening effect due to electrostatic actuation, the hardening effect due to piezoelectric materials, and varying the length and thickness of the piezoelectric materials. Also, this model can be used to design an actuator-sensor smart micro device.</description><identifier>ISSN: 1464-4207</identifier><identifier>EISSN: 2041-3076</identifier><identifier>DOI: 10.1177/1464420713513447</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Actuation ; Bernoulli Hypothesis ; Design engineering ; Electric potential ; Electrostatics ; Eulers equations ; Inertia ; Lagrange multiplier ; Mathematical analysis ; Mechanical engineering ; Nonlinearity ; Piezoelectricity ; Studies ; Voltage</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2015-08, Vol.229 (4), p.299-308</ispartof><rights>IMechE 2013</rights><rights>Copyright SAGE PUBLICATIONS, INC. Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-378c31baac2be01d9817e528a5bf2a400b4c6944330dc7e80b7dfe8449064de93</citedby><cites>FETCH-LOGICAL-c342t-378c31baac2be01d9817e528a5bf2a400b4c6944330dc7e80b7dfe8449064de93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1464420713513447$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1464420713513447$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,778,782,21802,27907,27908,43604,43605</link.rule.ids></links><search><creatorcontrib>Raeisifard, Hamed</creatorcontrib><creatorcontrib>Bahrami, Mansour Nikkhah</creatorcontrib><creatorcontrib>Yousefi-Koma, Aghil</creatorcontrib><title>Mechanical characterization and nonlinear analysis of a piezoelectric laminated micro-switch under electrostatic actuation</title><title>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</title><description>In this paper, a comprehensive model of a piezoelectric laminated micro-switch subjected to electrostatic excitation, which accounts for the nonlinearities due to inertia, curvature, and electrostatic forces, is presented. Dynamic equations of this model is derived by the Lagrange method and solved by the Galerkin method using five modes. The laminated micro-switch is assumed as an elastic Euler–Bernoulli beam, and the piezoelectric material is bonded onto a portion of it. The electrostatic actuation results are compared with other existing experimental results. Whereas the major drawback of electrostatically actuated micro-switches is the high driving voltage, using the piezoelectric materials in these systems can provide less driving voltage. The effect of variation in the length, thickness, and applying voltage of the piezoelectric materials on mechanical characterizations is discussed. The aim of this work is design and control of a micro-switch using three different methods: the softening effect due to electrostatic actuation, the hardening effect due to piezoelectric materials, and varying the length and thickness of the piezoelectric materials. Also, this model can be used to design an actuator-sensor smart micro device.</description><subject>Actuation</subject><subject>Bernoulli Hypothesis</subject><subject>Design engineering</subject><subject>Electric potential</subject><subject>Electrostatics</subject><subject>Eulers equations</subject><subject>Inertia</subject><subject>Lagrange multiplier</subject><subject>Mathematical analysis</subject><subject>Mechanical engineering</subject><subject>Nonlinearity</subject><subject>Piezoelectricity</subject><subject>Studies</subject><subject>Voltage</subject><issn>1464-4207</issn><issn>2041-3076</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1LxDAQxYMouK7ePQa8eKlOmmzTHkX8AsWLnss0nWqkm6xJi-z-9aauB1nwNDO833vDMIydCrgQQutLoQqlctBCLoRUSu-xWQ5KZBJ0sc9mk5xN-iE7ivEDAIQGPWObJzLv6KzBnqcmoBko2A0O1juOruXOu946wpAm7NfRRu47jnxlaeOpJzMEa3iPS-twoJYvrQk-i192MO98dC0FvqV8HFKq4WnD-BN_zA467COd_NY5e729ebm-zx6f7x6urx4zI1U-ZFKXRooG0eQNgWirUmha5CUumi5HBdAoU1RKSQmt0VRCo9uOSqUqKFRLlZyz823uKvjPkeJQL2001PfoyI-xFlqUVS5UmSf0bAf98GNId08UgKy0KHSiYEulS2MM1NWrYJcY1rWAenpGvfuMZMm2lohv9Cf0P_4bE4WLHg</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Raeisifard, Hamed</creator><creator>Bahrami, Mansour Nikkhah</creator><creator>Yousefi-Koma, Aghil</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201508</creationdate><title>Mechanical characterization and nonlinear analysis of a piezoelectric laminated micro-switch under electrostatic actuation</title><author>Raeisifard, Hamed ; Bahrami, Mansour Nikkhah ; Yousefi-Koma, Aghil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-378c31baac2be01d9817e528a5bf2a400b4c6944330dc7e80b7dfe8449064de93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Actuation</topic><topic>Bernoulli Hypothesis</topic><topic>Design engineering</topic><topic>Electric potential</topic><topic>Electrostatics</topic><topic>Eulers equations</topic><topic>Inertia</topic><topic>Lagrange multiplier</topic><topic>Mathematical analysis</topic><topic>Mechanical engineering</topic><topic>Nonlinearity</topic><topic>Piezoelectricity</topic><topic>Studies</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raeisifard, Hamed</creatorcontrib><creatorcontrib>Bahrami, Mansour Nikkhah</creatorcontrib><creatorcontrib>Yousefi-Koma, Aghil</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raeisifard, Hamed</au><au>Bahrami, Mansour Nikkhah</au><au>Yousefi-Koma, Aghil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization and nonlinear analysis of a piezoelectric laminated micro-switch under electrostatic actuation</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications</jtitle><date>2015-08</date><risdate>2015</risdate><volume>229</volume><issue>4</issue><spage>299</spage><epage>308</epage><pages>299-308</pages><issn>1464-4207</issn><eissn>2041-3076</eissn><abstract>In this paper, a comprehensive model of a piezoelectric laminated micro-switch subjected to electrostatic excitation, which accounts for the nonlinearities due to inertia, curvature, and electrostatic forces, is presented. Dynamic equations of this model is derived by the Lagrange method and solved by the Galerkin method using five modes. The laminated micro-switch is assumed as an elastic Euler–Bernoulli beam, and the piezoelectric material is bonded onto a portion of it. The electrostatic actuation results are compared with other existing experimental results. Whereas the major drawback of electrostatically actuated micro-switches is the high driving voltage, using the piezoelectric materials in these systems can provide less driving voltage. The effect of variation in the length, thickness, and applying voltage of the piezoelectric materials on mechanical characterizations is discussed. The aim of this work is design and control of a micro-switch using three different methods: the softening effect due to electrostatic actuation, the hardening effect due to piezoelectric materials, and varying the length and thickness of the piezoelectric materials. Also, this model can be used to design an actuator-sensor smart micro device.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1464420713513447</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1464-4207
ispartof Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications, 2015-08, Vol.229 (4), p.299-308
issn 1464-4207
2041-3076
language eng
recordid cdi_proquest_miscellaneous_1718921482
source SAGE Complete A-Z List
subjects Actuation
Bernoulli Hypothesis
Design engineering
Electric potential
Electrostatics
Eulers equations
Inertia
Lagrange multiplier
Mathematical analysis
Mechanical engineering
Nonlinearity
Piezoelectricity
Studies
Voltage
title Mechanical characterization and nonlinear analysis of a piezoelectric laminated micro-switch under electrostatic actuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A10%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20and%20nonlinear%20analysis%20of%20a%20piezoelectric%20laminated%20micro-switch%20under%20electrostatic%20actuation&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20L,%20Journal%20of%20materials,%20design%20and%20applications&rft.au=Raeisifard,%20Hamed&rft.date=2015-08&rft.volume=229&rft.issue=4&rft.spage=299&rft.epage=308&rft.pages=299-308&rft.issn=1464-4207&rft.eissn=2041-3076&rft_id=info:doi/10.1177/1464420713513447&rft_dat=%3Cproquest_cross%3E3764835611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700397167&rft_id=info:pmid/&rft_sage_id=10.1177_1464420713513447&rfr_iscdi=true