Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations

Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-7
Hauptverfasser: Mishra, Maneesh, Skote, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2015
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2015
creator Mishra, Maneesh
Skote, Martin
description Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.
doi_str_mv 10.1155/2015/253249
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718920290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3734839011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-754fa950742899fabaf3f8b77d7bc6fca6a67eb6020dff0b4fc29357cb4684ce3</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pybsEvIhSzc-mOer8MaEwkIneSpolLqNrZ9I69t-bUg_ixct77_DJ4-ULwClG1xhzfkMQjoVTwuQeGGGe0oRjJvbjjAhLMKHvh-AohBVCBHOcjUB-79UHfDGLTreuqaGr4bzzZVeZuoV3TVcvlN_BXO2MD3Dr2iWcqsrCN_VlYqkqOAvaVZXqH4djcGBVFczJTx-D18eH-WSa5LOn58ltnmiayTYRnFklORKMZFJaVSpLbVYKsRClTq1WqUqFKVNE0MJaVDKriaRc6JKlGdOGjsHFsHfjm8_OhLZYu6BNPKM2TRcKLHAmCSISRXr-h66aztfxugKncakUMuvV1aC0b0LwxhYb79bx5wVGRZ9s0SdbDMlGfTnopYvxbN0_-GzAJhJj1S8sKCUp_QZC3IEO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1693597980</pqid></control><display><type>article</type><title>Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations</title><source>Wiley_OA刊</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Mishra, Maneesh ; Skote, Martin</creator><contributor>Liew, Kim M.</contributor><creatorcontrib>Mishra, Maneesh ; Skote, Martin ; Liew, Kim M.</creatorcontrib><description>Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2015/253249</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aircraft ; Boundary conditions ; Boundary layer ; Boundary layer flow ; Direct numerical simulation ; Discontinuity ; Drag reduction ; Finite volume method ; Fourier transforms ; Gibbs phenomenon ; Mathematical models ; Mathematical problems ; Oscillations ; Partial differential equations ; Skin ; Skin friction ; Spectral methods ; Square waves ; Step functions ; Turbulence ; Turbulent boundary layer ; Turbulent flow ; Velocity ; Walls</subject><ispartof>Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-7</ispartof><rights>Copyright © 2015 Maneesh Mishra and Martin Skote.</rights><rights>Copyright © 2015 Maneesh Mishra and Martin Skote. Maneesh Mishra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-754fa950742899fabaf3f8b77d7bc6fca6a67eb6020dff0b4fc29357cb4684ce3</citedby><cites>FETCH-LOGICAL-c389t-754fa950742899fabaf3f8b77d7bc6fca6a67eb6020dff0b4fc29357cb4684ce3</cites><orcidid>0000-0003-2219-4697 ; 0000-0002-6431-6245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Liew, Kim M.</contributor><creatorcontrib>Mishra, Maneesh</creatorcontrib><creatorcontrib>Skote, Martin</creatorcontrib><title>Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations</title><title>Mathematical problems in engineering</title><description>Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.</description><subject>Aircraft</subject><subject>Boundary conditions</subject><subject>Boundary layer</subject><subject>Boundary layer flow</subject><subject>Direct numerical simulation</subject><subject>Discontinuity</subject><subject>Drag reduction</subject><subject>Finite volume method</subject><subject>Fourier transforms</subject><subject>Gibbs phenomenon</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Oscillations</subject><subject>Partial differential equations</subject><subject>Skin</subject><subject>Skin friction</subject><subject>Spectral methods</subject><subject>Square waves</subject><subject>Step functions</subject><subject>Turbulence</subject><subject>Turbulent boundary layer</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Walls</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pybsEvIhSzc-mOer8MaEwkIneSpolLqNrZ9I69t-bUg_ixct77_DJ4-ULwClG1xhzfkMQjoVTwuQeGGGe0oRjJvbjjAhLMKHvh-AohBVCBHOcjUB-79UHfDGLTreuqaGr4bzzZVeZuoV3TVcvlN_BXO2MD3Dr2iWcqsrCN_VlYqkqOAvaVZXqH4djcGBVFczJTx-D18eH-WSa5LOn58ltnmiayTYRnFklORKMZFJaVSpLbVYKsRClTq1WqUqFKVNE0MJaVDKriaRc6JKlGdOGjsHFsHfjm8_OhLZYu6BNPKM2TRcKLHAmCSISRXr-h66aztfxugKncakUMuvV1aC0b0LwxhYb79bx5wVGRZ9s0SdbDMlGfTnopYvxbN0_-GzAJhJj1S8sKCUp_QZC3IEO</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Mishra, Maneesh</creator><creator>Skote, Martin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2219-4697</orcidid><orcidid>https://orcid.org/0000-0002-6431-6245</orcidid></search><sort><creationdate>20150101</creationdate><title>Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations</title><author>Mishra, Maneesh ; Skote, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-754fa950742899fabaf3f8b77d7bc6fca6a67eb6020dff0b4fc29357cb4684ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aircraft</topic><topic>Boundary conditions</topic><topic>Boundary layer</topic><topic>Boundary layer flow</topic><topic>Direct numerical simulation</topic><topic>Discontinuity</topic><topic>Drag reduction</topic><topic>Finite volume method</topic><topic>Fourier transforms</topic><topic>Gibbs phenomenon</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Oscillations</topic><topic>Partial differential equations</topic><topic>Skin</topic><topic>Skin friction</topic><topic>Spectral methods</topic><topic>Square waves</topic><topic>Step functions</topic><topic>Turbulence</topic><topic>Turbulent boundary layer</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Maneesh</creatorcontrib><creatorcontrib>Skote, Martin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Maneesh</au><au>Skote, Martin</au><au>Liew, Kim M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/253249</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2219-4697</orcidid><orcidid>https://orcid.org/0000-0002-6431-6245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2015-01, Vol.2015 (2015), p.1-7
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1718920290
source Wiley_OA刊; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Aircraft
Boundary conditions
Boundary layer
Boundary layer flow
Direct numerical simulation
Discontinuity
Drag reduction
Finite volume method
Fourier transforms
Gibbs phenomenon
Mathematical models
Mathematical problems
Oscillations
Partial differential equations
Skin
Skin friction
Spectral methods
Square waves
Step functions
Turbulence
Turbulent boundary layer
Turbulent flow
Velocity
Walls
title Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drag%20Reduction%20in%20Turbulent%20Boundary%20Layers%20with%20Half%20Wave%20Wall%20Oscillations&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Mishra,%20Maneesh&rft.date=2015-01-01&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2015/253249&rft_dat=%3Cproquest_cross%3E3734839011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1693597980&rft_id=info:pmid/&rfr_iscdi=true