An Investigation of Wavelet Average Framing LPC for Noisy Speaker Identification Environment

In the presented research paper, an average framing linear prediction coding (AFLPC) method for a text-independent speaker identification system is studied. AFLPC was proposed in our previous work. Generally, linear prediction coding (LPC) has been used in numerous speech recognition tasks. Here, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2015-01, Vol.2015 (2015), p.1-10
Hauptverfasser: Alotaibi, Naif, Balamesh, A. S., Al-Hmouz, Rami, Daqrouq, Khaled, Nöth, Elmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the presented research paper, an average framing linear prediction coding (AFLPC) method for a text-independent speaker identification system is studied. AFLPC was proposed in our previous work. Generally, linear prediction coding (LPC) has been used in numerous speech recognition tasks. Here, an investigative procedure was based on studying the AFLPC speaker recognition system in a noisy environment. In the stage of feature extraction, the speaker-specific resonances of the vocal tract were extracted using the AFLPC technique. In the phase of classification, a probabilistic neural network (PNN) and Bayesian classifier (BC) were applied for comparison. In the performed investigation, the quality of different wavelet transforms with AFLPC techniques was compared with each other. In addition, the capability analysis of the proposed system was examined for comparison with other systems suggested in the literature. In response to an achieved experimental result in a noisy environment, the PNN classifier could have a better performance with the fusion of wavelets and AFLPC as a feature extraction technique termed WFALPCF.
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/598610