Theoretical analysis of screened heat pipes for medium and high temperature solar applications
A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapo...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2014-01, Vol.547 (1), p.12010-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 12010 |
container_title | Journal of physics. Conference series |
container_volume | 547 |
creator | Di Marco, P Filippeschi, S Franco, A Jafari, D |
description | A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application. |
doi_str_mv | 10.1088/1742-6596/547/1/012010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718919117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576761184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-BQl48VKbSdMkPcriFyx42bMhthO3S9vUpD3svzdlxYNzmWHeh4F5CLkF9gBM6xyU4JksK5mXQuWQM-AM2BlZ_QXnf7PWl-QqxgNjRSq1Ih-7PfqAU1vbjtrBdsfYRuodjXVAHLChe7QTHdsRI3U-0B6bdu4TmpL2a08n7EcMdpoD0ug7G6gdxy6dm1o_xGty4WwX8ea3r8nu-Wm3ec227y9vm8dtVgtWTllZOQfAFRcaa1CWO2Y_QdRVIytugQkmWWG1FLzgy6Jk6IqibDTXSlpbrMn96ewY_PeMcTJ9G2vsOjugn6MBBbqCCkAl9O4fevBzSI9Hw0sllQTQIlHyRNXBxxjQmTG0vQ1HA8ws1s0i1CxyTbJuwJysFz8r-nSS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576761184</pqid></control><display><type>article</type><title>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</title><source>Institute of Physics IOPscience extra</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Marco, P ; Filippeschi, S ; Franco, A ; Jafari, D</creator><creatorcontrib>Di Marco, P ; Filippeschi, S ; Franco, A ; Jafari, D</creatorcontrib><description>A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/547/1/012010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computational fluid dynamics ; Conduction heating ; Conductive heat transfer ; Diameters ; Evaporation ; Evaporators ; Fluid flow ; Heat ; Heat pipes ; Heat transfer coefficients ; High temperature ; Liquid flow ; Mathematical analysis ; Mathematical models ; Physics ; Pressure drop ; Solar collectors ; Steady state models ; Thickness ; Two dimensional analysis ; Two dimensional models ; Vapour ; Wicks</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.547 (1), p.12010-10</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</citedby><cites>FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Di Marco, P</creatorcontrib><creatorcontrib>Filippeschi, S</creatorcontrib><creatorcontrib>Franco, A</creatorcontrib><creatorcontrib>Jafari, D</creatorcontrib><title>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</title><title>Journal of physics. Conference series</title><description>A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.</description><subject>Computational fluid dynamics</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Diameters</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat transfer coefficients</subject><subject>High temperature</subject><subject>Liquid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Pressure drop</subject><subject>Solar collectors</subject><subject>Steady state models</subject><subject>Thickness</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>Vapour</subject><subject>Wicks</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LxDAQhoMouK7-BQl48VKbSdMkPcriFyx42bMhthO3S9vUpD3svzdlxYNzmWHeh4F5CLkF9gBM6xyU4JksK5mXQuWQM-AM2BlZ_QXnf7PWl-QqxgNjRSq1Ih-7PfqAU1vbjtrBdsfYRuodjXVAHLChe7QTHdsRI3U-0B6bdu4TmpL2a08n7EcMdpoD0ug7G6gdxy6dm1o_xGty4WwX8ea3r8nu-Wm3ec227y9vm8dtVgtWTllZOQfAFRcaa1CWO2Y_QdRVIytugQkmWWG1FLzgy6Jk6IqibDTXSlpbrMn96ewY_PeMcTJ9G2vsOjugn6MBBbqCCkAl9O4fevBzSI9Hw0sllQTQIlHyRNXBxxjQmTG0vQ1HA8ws1s0i1CxyTbJuwJysFz8r-nSS</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Di Marco, P</creator><creator>Filippeschi, S</creator><creator>Franco, A</creator><creator>Jafari, D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</title><author>Di Marco, P ; Filippeschi, S ; Franco, A ; Jafari, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Diameters</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat transfer coefficients</topic><topic>High temperature</topic><topic>Liquid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Pressure drop</topic><topic>Solar collectors</topic><topic>Steady state models</topic><topic>Thickness</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>Vapour</topic><topic>Wicks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marco, P</creatorcontrib><creatorcontrib>Filippeschi, S</creatorcontrib><creatorcontrib>Franco, A</creatorcontrib><creatorcontrib>Jafari, D</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marco, P</au><au>Filippeschi, S</au><au>Franco, A</au><au>Jafari, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>547</volume><issue>1</issue><spage>12010</spage><epage>10</epage><pages>12010-10</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/547/1/012010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2014-01, Vol.547 (1), p.12010-10 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718919117 |
source | Institute of Physics IOPscience extra; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Computational fluid dynamics Conduction heating Conductive heat transfer Diameters Evaporation Evaporators Fluid flow Heat Heat pipes Heat transfer coefficients High temperature Liquid flow Mathematical analysis Mathematical models Physics Pressure drop Solar collectors Steady state models Thickness Two dimensional analysis Two dimensional models Vapour Wicks |
title | Theoretical analysis of screened heat pipes for medium and high temperature solar applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20of%20screened%20heat%20pipes%20for%20medium%20and%20high%20temperature%20solar%20applications&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Di%20Marco,%20P&rft.date=2014-01-01&rft.volume=547&rft.issue=1&rft.spage=12010&rft.epage=10&rft.pages=12010-10&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/547/1/012010&rft_dat=%3Cproquest_cross%3E2576761184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576761184&rft_id=info:pmid/&rfr_iscdi=true |