Theoretical analysis of screened heat pipes for medium and high temperature solar applications

A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2014-01, Vol.547 (1), p.12010-10
Hauptverfasser: Di Marco, P, Filippeschi, S, Franco, A, Jafari, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 12010
container_title Journal of physics. Conference series
container_volume 547
creator Di Marco, P
Filippeschi, S
Franco, A
Jafari, D
description A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.
doi_str_mv 10.1088/1742-6596/547/1/012010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718919117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576761184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMouK7-BQl48VKbSdMkPcriFyx42bMhthO3S9vUpD3svzdlxYNzmWHeh4F5CLkF9gBM6xyU4JksK5mXQuWQM-AM2BlZ_QXnf7PWl-QqxgNjRSq1Ih-7PfqAU1vbjtrBdsfYRuodjXVAHLChe7QTHdsRI3U-0B6bdu4TmpL2a08n7EcMdpoD0ug7G6gdxy6dm1o_xGty4WwX8ea3r8nu-Wm3ec227y9vm8dtVgtWTllZOQfAFRcaa1CWO2Y_QdRVIytugQkmWWG1FLzgy6Jk6IqibDTXSlpbrMn96ewY_PeMcTJ9G2vsOjugn6MBBbqCCkAl9O4fevBzSI9Hw0sllQTQIlHyRNXBxxjQmTG0vQ1HA8ws1s0i1CxyTbJuwJysFz8r-nSS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576761184</pqid></control><display><type>article</type><title>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</title><source>Institute of Physics IOPscience extra</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Di Marco, P ; Filippeschi, S ; Franco, A ; Jafari, D</creator><creatorcontrib>Di Marco, P ; Filippeschi, S ; Franco, A ; Jafari, D</creatorcontrib><description>A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/547/1/012010</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Computational fluid dynamics ; Conduction heating ; Conductive heat transfer ; Diameters ; Evaporation ; Evaporators ; Fluid flow ; Heat ; Heat pipes ; Heat transfer coefficients ; High temperature ; Liquid flow ; Mathematical analysis ; Mathematical models ; Physics ; Pressure drop ; Solar collectors ; Steady state models ; Thickness ; Two dimensional analysis ; Two dimensional models ; Vapour ; Wicks</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.547 (1), p.12010-10</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</citedby><cites>FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Di Marco, P</creatorcontrib><creatorcontrib>Filippeschi, S</creatorcontrib><creatorcontrib>Franco, A</creatorcontrib><creatorcontrib>Jafari, D</creatorcontrib><title>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</title><title>Journal of physics. Conference series</title><description>A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.</description><subject>Computational fluid dynamics</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Diameters</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Fluid flow</subject><subject>Heat</subject><subject>Heat pipes</subject><subject>Heat transfer coefficients</subject><subject>High temperature</subject><subject>Liquid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Pressure drop</subject><subject>Solar collectors</subject><subject>Steady state models</subject><subject>Thickness</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><subject>Vapour</subject><subject>Wicks</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1LxDAQhoMouK7-BQl48VKbSdMkPcriFyx42bMhthO3S9vUpD3svzdlxYNzmWHeh4F5CLkF9gBM6xyU4JksK5mXQuWQM-AM2BlZ_QXnf7PWl-QqxgNjRSq1Ih-7PfqAU1vbjtrBdsfYRuodjXVAHLChe7QTHdsRI3U-0B6bdu4TmpL2a08n7EcMdpoD0ug7G6gdxy6dm1o_xGty4WwX8ea3r8nu-Wm3ec227y9vm8dtVgtWTllZOQfAFRcaa1CWO2Y_QdRVIytugQkmWWG1FLzgy6Jk6IqibDTXSlpbrMn96ewY_PeMcTJ9G2vsOjugn6MBBbqCCkAl9O4fevBzSI9Hw0sllQTQIlHyRNXBxxjQmTG0vQ1HA8ws1s0i1CxyTbJuwJysFz8r-nSS</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Di Marco, P</creator><creator>Filippeschi, S</creator><creator>Franco, A</creator><creator>Jafari, D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</title><author>Di Marco, P ; Filippeschi, S ; Franco, A ; Jafari, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-59ff1127248ec17a2f0ab14c9d692a1040603a86423292a150ef335d82876aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computational fluid dynamics</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Diameters</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Fluid flow</topic><topic>Heat</topic><topic>Heat pipes</topic><topic>Heat transfer coefficients</topic><topic>High temperature</topic><topic>Liquid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Pressure drop</topic><topic>Solar collectors</topic><topic>Steady state models</topic><topic>Thickness</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><topic>Vapour</topic><topic>Wicks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Marco, P</creatorcontrib><creatorcontrib>Filippeschi, S</creatorcontrib><creatorcontrib>Franco, A</creatorcontrib><creatorcontrib>Jafari, D</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Marco, P</au><au>Filippeschi, S</au><au>Franco, A</au><au>Jafari, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis of screened heat pipes for medium and high temperature solar applications</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>547</volume><issue>1</issue><spage>12010</spage><epage>10</epage><pages>12010-10</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>A mathematical model is applied to study the cylindrical heat pipes (HPs) behaviour when it is exposed to higher heat input at the evaporator for solar collector applications. The steady state analytical model includes two-dimensional heat conduction in the wall, the liquid flow in the wick and vapour hydrodynamics, and can be used to evaluate the working limits and to optimize the HP. The results of the analytical model are compared with numerical and experimental results available in literature, with good agreement. The effects of heat transfer coefficient, power input, evaporator length, pipe diameter, wick thickness and effective pore radius on the vapour temperature, maximum pressure drop and maximum heat transfer capability (HTC) of the HP are studied. The analysis shows that wick thickness plays an important role in the enhancement of HTC. Results show that it is possible to improve HTC of a HP by selecting the appropriate wick thickness, effective pore radius, and evaporator length. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature solar collector application.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/547/1/012010</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2014-01, Vol.547 (1), p.12010-10
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718919117
source Institute of Physics IOPscience extra; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Computational fluid dynamics
Conduction heating
Conductive heat transfer
Diameters
Evaporation
Evaporators
Fluid flow
Heat
Heat pipes
Heat transfer coefficients
High temperature
Liquid flow
Mathematical analysis
Mathematical models
Physics
Pressure drop
Solar collectors
Steady state models
Thickness
Two dimensional analysis
Two dimensional models
Vapour
Wicks
title Theoretical analysis of screened heat pipes for medium and high temperature solar applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A50%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20of%20screened%20heat%20pipes%20for%20medium%20and%20high%20temperature%20solar%20applications&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Di%20Marco,%20P&rft.date=2014-01-01&rft.volume=547&rft.issue=1&rft.spage=12010&rft.epage=10&rft.pages=12010-10&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/547/1/012010&rft_dat=%3Cproquest_cross%3E2576761184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576761184&rft_id=info:pmid/&rfr_iscdi=true