Characterization of Titanium Laser Ablation

The atomic and ionic emission lines of titanium are often studied in laser-induced breakdown spectroscopy (LIBS) investigations, partly due to the abundance and luminosity of the lines and titanium's prominence in industry. In the current study, a 13 ns pulsed Nd:YAG laser with 160 mJ per pulse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2014-01, Vol.548 (1), p.12053-3
Hauptverfasser: Woods, A C, Parigger, C G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue 1
container_start_page 12053
container_title Journal of physics. Conference series
container_volume 548
creator Woods, A C
Parigger, C G
description The atomic and ionic emission lines of titanium are often studied in laser-induced breakdown spectroscopy (LIBS) investigations, partly due to the abundance and luminosity of the lines and titanium's prominence in industry. In the current study, a 13 ns pulsed Nd:YAG laser with 160 mJ per pulse ablates a titanium sample in laboratory air at 10 Hz. Ti III emission lines between 232 nm and 244 nm are observed at 200 ns after laser-surface interaction, utilizing a 6 ns window. Two-dimensional images are obtained, providing spectra emanating along the height of the ablation plume. A Boltzmann plot method is implemented in order to infer electron temperature as a function of height along the plume. The hottest region of the plasma tends to be further away from the sample surface and is on the order of 16000 K.
doi_str_mv 10.1088/1742-6596/548/1/012053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718919069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718919069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-48be0aaf53a2dc950455d4d01b233c9ac016c28e1b5d332df4921c555d2cad273</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_ggS8CBK7s1_ZPZZiVQh4qedlstlgSprU3eSgv96tlR6cy8zwPgzDQ8gt0EegWi-gECxX0qiFFGlbUGBU8jMyOwXnp1nrS3IV45ZSnqqYkYfVBwZ0ow_tN47t0GdDk23aEft22mUlRh-yZdX9RtfkosEu-pu_Pifv66fN6iUv355fV8syd1yJMRe68hSxkRxZ7YykQspa1BQqxrkz6Cgox7SHStacs7oRhoGTCWIOa1bwObk_3t2H4XPycbS7Njrfddj7YYoWCtAGDFUmoXf_0O0whT59Z5ksVMGNUSpR6ki5MMQYfGP3od1h-LJA7cGhPeixB1U2ObRgjw75DzfRYp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576739966</pqid></control><display><type>article</type><title>Characterization of Titanium Laser Ablation</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Woods, A C ; Parigger, C G</creator><creatorcontrib>Woods, A C ; Parigger, C G</creatorcontrib><description>The atomic and ionic emission lines of titanium are often studied in laser-induced breakdown spectroscopy (LIBS) investigations, partly due to the abundance and luminosity of the lines and titanium's prominence in industry. In the current study, a 13 ns pulsed Nd:YAG laser with 160 mJ per pulse ablates a titanium sample in laboratory air at 10 Hz. Ti III emission lines between 232 nm and 244 nm are observed at 200 ns after laser-surface interaction, utilizing a 6 ns window. Two-dimensional images are obtained, providing spectra emanating along the height of the ablation plume. A Boltzmann plot method is implemented in order to infer electron temperature as a function of height along the plume. The hottest region of the plasma tends to be further away from the sample surface and is on the order of 16000 K.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/548/1/012053</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Ablation ; Atomic beam spectroscopy ; Electron energy ; Electron temperature ; Emission analysis ; Emission spectroscopy ; Laser ablation ; Laser induced breakdown spectroscopy ; Lasers ; Luminosity ; Neodymium lasers ; Physics ; Plumes ; Semiconductor lasers ; Spectrum analysis ; Titanium ; YAG lasers</subject><ispartof>Journal of physics. Conference series, 2014-01, Vol.548 (1), p.12053-3</ispartof><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-48be0aaf53a2dc950455d4d01b233c9ac016c28e1b5d332df4921c555d2cad273</citedby><cites>FETCH-LOGICAL-c364t-48be0aaf53a2dc950455d4d01b233c9ac016c28e1b5d332df4921c555d2cad273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Woods, A C</creatorcontrib><creatorcontrib>Parigger, C G</creatorcontrib><title>Characterization of Titanium Laser Ablation</title><title>Journal of physics. Conference series</title><description>The atomic and ionic emission lines of titanium are often studied in laser-induced breakdown spectroscopy (LIBS) investigations, partly due to the abundance and luminosity of the lines and titanium's prominence in industry. In the current study, a 13 ns pulsed Nd:YAG laser with 160 mJ per pulse ablates a titanium sample in laboratory air at 10 Hz. Ti III emission lines between 232 nm and 244 nm are observed at 200 ns after laser-surface interaction, utilizing a 6 ns window. Two-dimensional images are obtained, providing spectra emanating along the height of the ablation plume. A Boltzmann plot method is implemented in order to infer electron temperature as a function of height along the plume. The hottest region of the plasma tends to be further away from the sample surface and is on the order of 16000 K.</description><subject>Ablation</subject><subject>Atomic beam spectroscopy</subject><subject>Electron energy</subject><subject>Electron temperature</subject><subject>Emission analysis</subject><subject>Emission spectroscopy</subject><subject>Laser ablation</subject><subject>Laser induced breakdown spectroscopy</subject><subject>Lasers</subject><subject>Luminosity</subject><subject>Neodymium lasers</subject><subject>Physics</subject><subject>Plumes</subject><subject>Semiconductor lasers</subject><subject>Spectrum analysis</subject><subject>Titanium</subject><subject>YAG lasers</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1Lw0AQhhdRsFb_ggS8CBK7s1_ZPZZiVQh4qedlstlgSprU3eSgv96tlR6cy8zwPgzDQ8gt0EegWi-gECxX0qiFFGlbUGBU8jMyOwXnp1nrS3IV45ZSnqqYkYfVBwZ0ow_tN47t0GdDk23aEft22mUlRh-yZdX9RtfkosEu-pu_Pifv66fN6iUv355fV8syd1yJMRe68hSxkRxZ7YykQspa1BQqxrkz6Cgox7SHStacs7oRhoGTCWIOa1bwObk_3t2H4XPycbS7Njrfddj7YYoWCtAGDFUmoXf_0O0whT59Z5ksVMGNUSpR6ki5MMQYfGP3od1h-LJA7cGhPeixB1U2ObRgjw75DzfRYp4</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Woods, A C</creator><creator>Parigger, C G</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20140101</creationdate><title>Characterization of Titanium Laser Ablation</title><author>Woods, A C ; Parigger, C G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-48be0aaf53a2dc950455d4d01b233c9ac016c28e1b5d332df4921c555d2cad273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ablation</topic><topic>Atomic beam spectroscopy</topic><topic>Electron energy</topic><topic>Electron temperature</topic><topic>Emission analysis</topic><topic>Emission spectroscopy</topic><topic>Laser ablation</topic><topic>Laser induced breakdown spectroscopy</topic><topic>Lasers</topic><topic>Luminosity</topic><topic>Neodymium lasers</topic><topic>Physics</topic><topic>Plumes</topic><topic>Semiconductor lasers</topic><topic>Spectrum analysis</topic><topic>Titanium</topic><topic>YAG lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woods, A C</creatorcontrib><creatorcontrib>Parigger, C G</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woods, A C</au><au>Parigger, C G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Titanium Laser Ablation</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>548</volume><issue>1</issue><spage>12053</spage><epage>3</epage><pages>12053-3</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The atomic and ionic emission lines of titanium are often studied in laser-induced breakdown spectroscopy (LIBS) investigations, partly due to the abundance and luminosity of the lines and titanium's prominence in industry. In the current study, a 13 ns pulsed Nd:YAG laser with 160 mJ per pulse ablates a titanium sample in laboratory air at 10 Hz. Ti III emission lines between 232 nm and 244 nm are observed at 200 ns after laser-surface interaction, utilizing a 6 ns window. Two-dimensional images are obtained, providing spectra emanating along the height of the ablation plume. A Boltzmann plot method is implemented in order to infer electron temperature as a function of height along the plume. The hottest region of the plasma tends to be further away from the sample surface and is on the order of 16000 K.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/548/1/012053</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2014-01, Vol.548 (1), p.12053-3
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1718919069
source Institute of Physics IOPscience extra; IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Ablation
Atomic beam spectroscopy
Electron energy
Electron temperature
Emission analysis
Emission spectroscopy
Laser ablation
Laser induced breakdown spectroscopy
Lasers
Luminosity
Neodymium lasers
Physics
Plumes
Semiconductor lasers
Spectrum analysis
Titanium
YAG lasers
title Characterization of Titanium Laser Ablation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Titanium%20Laser%20Ablation&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Woods,%20A%20C&rft.date=2014-01-01&rft.volume=548&rft.issue=1&rft.spage=12053&rft.epage=3&rft.pages=12053-3&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/548/1/012053&rft_dat=%3Cproquest_cross%3E1718919069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576739966&rft_id=info:pmid/&rfr_iscdi=true