GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward
The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2015-10, Vol.80 (19), p.9371-9378 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9378 |
---|---|
container_issue | 19 |
container_start_page | 9371 |
container_title | Journal of organic chemistry |
container_volume | 80 |
creator | Zanardi, María M Sarotti, Ariel M |
description | The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments. |
doi_str_mv | 10.1021/acs.joc.5b01663 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718909476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718909476</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</originalsourceid><addsrcrecordid>eNp1kU1LMzEUhYMoWj_W7l6yFGRqMplkJstS_AK1YlVwNaTJbRvf6UxNMhR3_gXxH_pLjG11591cuDznXDgHoUNKupSk9ERp331udJePCBWCbaAO5SlJhCTZJuoQkqYJSwXbQbveP5M4nPNttBNPTBaCddD7-WVvgPufbx8XuD8YPuGhnbWVCrapPb4GNwGDFzZMcc8FO7baqgrfQOuWKywa99_jWxUCuBrfgW4mtf3W4l6tqldvfRfftn5q6wkOU8DD4FodlupHVVmz_INVvMMcnzVuoZzZR1tjVXk4WO899HB2et-_SK4G55f93lWiWJ6FhOfKCJ4zKiRnOktprqUoICVaiFxBIYBKKTQfAaFGZ5Bm3FBpcq4VyIIatoeOVr5z17y04EM5s15DVakamtaXNKeFJDLLRURPVqh2jfcOxuXc2ZlyryUl5XcPZeyhjD2U6x6i4t_avB3NwPzyP8FH4HgFrJSti3n5P-2-AF73lPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718909476</pqid></control><display><type>article</type><title>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</title><source>ACS Publications</source><creator>Zanardi, María M ; Sarotti, Ariel M</creator><creatorcontrib>Zanardi, María M ; Sarotti, Ariel M</creatorcontrib><description>The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.5b01663</identifier><identifier>PMID: 26339863</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2015-10, Vol.80 (19), p.9371-9378</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</citedby><cites>FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.5b01663$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.5b01663$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26339863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanardi, María M</creatorcontrib><creatorcontrib>Sarotti, Ariel M</creatorcontrib><title>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNp1kU1LMzEUhYMoWj_W7l6yFGRqMplkJstS_AK1YlVwNaTJbRvf6UxNMhR3_gXxH_pLjG11591cuDznXDgHoUNKupSk9ERp331udJePCBWCbaAO5SlJhCTZJuoQkqYJSwXbQbveP5M4nPNttBNPTBaCddD7-WVvgPufbx8XuD8YPuGhnbWVCrapPb4GNwGDFzZMcc8FO7baqgrfQOuWKywa99_jWxUCuBrfgW4mtf3W4l6tqldvfRfftn5q6wkOU8DD4FodlupHVVmz_INVvMMcnzVuoZzZR1tjVXk4WO899HB2et-_SK4G55f93lWiWJ6FhOfKCJ4zKiRnOktprqUoICVaiFxBIYBKKTQfAaFGZ5Bm3FBpcq4VyIIatoeOVr5z17y04EM5s15DVakamtaXNKeFJDLLRURPVqh2jfcOxuXc2ZlyryUl5XcPZeyhjD2U6x6i4t_avB3NwPzyP8FH4HgFrJSti3n5P-2-AF73lPo</recordid><startdate>20151002</startdate><enddate>20151002</enddate><creator>Zanardi, María M</creator><creator>Sarotti, Ariel M</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151002</creationdate><title>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</title><author>Zanardi, María M ; Sarotti, Ariel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanardi, María M</creatorcontrib><creatorcontrib>Sarotti, Ariel M</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanardi, María M</au><au>Sarotti, Ariel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2015-10-02</date><risdate>2015</risdate><volume>80</volume><issue>19</issue><spage>9371</spage><epage>9378</epage><pages>9371-9378</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26339863</pmid><doi>10.1021/acs.joc.5b01663</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3263 |
ispartof | Journal of organic chemistry, 2015-10, Vol.80 (19), p.9371-9378 |
issn | 0022-3263 1520-6904 |
language | eng |
recordid | cdi_proquest_miscellaneous_1718909476 |
source | ACS Publications |
title | GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIAO%20C%E2%80%93H%20COSY%20Simulations%20Merged%20with%20Artificial%20Neural%20Networks%20Pattern%20Recognition%20Analysis.%20Pushing%20the%20Structural%20Validation%20a%20Step%20Forward&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Zanardi,%20Mari%CC%81a%20M&rft.date=2015-10-02&rft.volume=80&rft.issue=19&rft.spage=9371&rft.epage=9378&rft.pages=9371-9378&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.5b01663&rft_dat=%3Cproquest_cross%3E1718909476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718909476&rft_id=info:pmid/26339863&rfr_iscdi=true |