GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward

The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2015-10, Vol.80 (19), p.9371-9378
Hauptverfasser: Zanardi, María M, Sarotti, Ariel M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9378
container_issue 19
container_start_page 9371
container_title Journal of organic chemistry
container_volume 80
creator Zanardi, María M
Sarotti, Ariel M
description The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.
doi_str_mv 10.1021/acs.joc.5b01663
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1718909476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718909476</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</originalsourceid><addsrcrecordid>eNp1kU1LMzEUhYMoWj_W7l6yFGRqMplkJstS_AK1YlVwNaTJbRvf6UxNMhR3_gXxH_pLjG11591cuDznXDgHoUNKupSk9ERp331udJePCBWCbaAO5SlJhCTZJuoQkqYJSwXbQbveP5M4nPNttBNPTBaCddD7-WVvgPufbx8XuD8YPuGhnbWVCrapPb4GNwGDFzZMcc8FO7baqgrfQOuWKywa99_jWxUCuBrfgW4mtf3W4l6tqldvfRfftn5q6wkOU8DD4FodlupHVVmz_INVvMMcnzVuoZzZR1tjVXk4WO899HB2et-_SK4G55f93lWiWJ6FhOfKCJ4zKiRnOktprqUoICVaiFxBIYBKKTQfAaFGZ5Bm3FBpcq4VyIIatoeOVr5z17y04EM5s15DVakamtaXNKeFJDLLRURPVqh2jfcOxuXc2ZlyryUl5XcPZeyhjD2U6x6i4t_avB3NwPzyP8FH4HgFrJSti3n5P-2-AF73lPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718909476</pqid></control><display><type>article</type><title>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</title><source>ACS Publications</source><creator>Zanardi, María M ; Sarotti, Ariel M</creator><creatorcontrib>Zanardi, María M ; Sarotti, Ariel M</creatorcontrib><description>The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.5b01663</identifier><identifier>PMID: 26339863</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2015-10, Vol.80 (19), p.9371-9378</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</citedby><cites>FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.5b01663$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.5b01663$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26339863$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanardi, María M</creatorcontrib><creatorcontrib>Sarotti, Ariel M</creatorcontrib><title>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNp1kU1LMzEUhYMoWj_W7l6yFGRqMplkJstS_AK1YlVwNaTJbRvf6UxNMhR3_gXxH_pLjG11591cuDznXDgHoUNKupSk9ERp331udJePCBWCbaAO5SlJhCTZJuoQkqYJSwXbQbveP5M4nPNttBNPTBaCddD7-WVvgPufbx8XuD8YPuGhnbWVCrapPb4GNwGDFzZMcc8FO7baqgrfQOuWKywa99_jWxUCuBrfgW4mtf3W4l6tqldvfRfftn5q6wkOU8DD4FodlupHVVmz_INVvMMcnzVuoZzZR1tjVXk4WO899HB2et-_SK4G55f93lWiWJ6FhOfKCJ4zKiRnOktprqUoICVaiFxBIYBKKTQfAaFGZ5Bm3FBpcq4VyIIatoeOVr5z17y04EM5s15DVakamtaXNKeFJDLLRURPVqh2jfcOxuXc2ZlyryUl5XcPZeyhjD2U6x6i4t_avB3NwPzyP8FH4HgFrJSti3n5P-2-AF73lPo</recordid><startdate>20151002</startdate><enddate>20151002</enddate><creator>Zanardi, María M</creator><creator>Sarotti, Ariel M</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151002</creationdate><title>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</title><author>Zanardi, María M ; Sarotti, Ariel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-57ad657316953c4217c968e20c667ae86e1996c5be01dc4e245d19d75cae981d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanardi, María M</creatorcontrib><creatorcontrib>Sarotti, Ariel M</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanardi, María M</au><au>Sarotti, Ariel M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2015-10-02</date><risdate>2015</risdate><volume>80</volume><issue>19</issue><spage>9371</spage><epage>9378</epage><pages>9371-9378</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>The structural validation problem using quantum chemistry approaches (confirm or reject a candidate structure) has been tackled with artificial neural network (ANN) mediated multidimensional pattern recognition from experimental and calculated 2D C–H COSY. In order to identify subtle errors (such as regio- or stereochemical), more than 400 ANNs have been built and trained, and the most efficient in terms of classification ability were successfully validated in challenging real examples of natural product misassignments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26339863</pmid><doi>10.1021/acs.joc.5b01663</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2015-10, Vol.80 (19), p.9371-9378
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_1718909476
source ACS Publications
title GIAO C–H COSY Simulations Merged with Artificial Neural Networks Pattern Recognition Analysis. Pushing the Structural Validation a Step Forward
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GIAO%20C%E2%80%93H%20COSY%20Simulations%20Merged%20with%20Artificial%20Neural%20Networks%20Pattern%20Recognition%20Analysis.%20Pushing%20the%20Structural%20Validation%20a%20Step%20Forward&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Zanardi,%20Mari%CC%81a%20M&rft.date=2015-10-02&rft.volume=80&rft.issue=19&rft.spage=9371&rft.epage=9378&rft.pages=9371-9378&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.5b01663&rft_dat=%3Cproquest_cross%3E1718909476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718909476&rft_id=info:pmid/26339863&rfr_iscdi=true