Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus
We asked whether the structural heterogeneity of the hippocampal CA3-CA2 axis is reflected in how space is mapped onto place cells in CA3-CA2. Place fields were smaller and sharper in proximal CA3 than in distal CA3 and CA2. The proximodistal shift was accompanied by a progressive loss in the abilit...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2015-09, Vol.87 (5), p.1078-1092 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1092 |
---|---|
container_issue | 5 |
container_start_page | 1078 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 87 |
creator | Lu, Li Igarashi, Kei M. Witter, Menno P. Moser, Edvard I. Moser, May-Britt |
description | We asked whether the structural heterogeneity of the hippocampal CA3-CA2 axis is reflected in how space is mapped onto place cells in CA3-CA2. Place fields were smaller and sharper in proximal CA3 than in distal CA3 and CA2. The proximodistal shift was accompanied by a progressive loss in the ability of place cells to distinguish configurations of the same spatial environment, as well as a reduction in the extent to which place cells formed uncorrelated representations for different environments. The transition to similar representations was nonlinear, with the sharpest drop in distal CA3. These functional changes along the CA3-CA2 axis mirror gradients in gene expression and connectivity that partly override cytoarchitectonic boundaries between the subfields of the hippocampus. The results point to the CA3-CA2 axis as a functionally graded system with powerful pattern separation at the proximal end, near the dentate gyrus, and stronger pattern completion at the CA2 end.
•Place fields in proximal CA3 are sharper than in distal CA3 and CA2•Rate remapping in place cells decreases gradually along the CA3-to-CA2 axis•Frequency of global remapping events drops sharply near the distal end of CA3•Functionally the CA2 region extends into the distal 10% of CA3
Lu et al. show that ensemble activity of hippocampal place cells is topographically organized along the CA3-to-CA2 axis, with strong pattern separation near the dentate gyrus and strong pattern completion in and near CA2. |
doi_str_mv | 10.1016/j.neuron.2015.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1717493993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627315006297</els_id><sourcerecordid>1717493993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-964b8608fa74901ac0318a77fe0a0c2209e9a7dc850c42a0ba56c936416d18293</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMo7rr6D0QKXry0zqRt0lyEZfELVvSg55BNU7dLt6lJK_rvzbrqwYN4GhieeYeZh5BjhAQB2fkqac3gbJtQwDwBngDwHTJGEDzOUIhdMoZCsJhRno7IgfcrAMxygftkRBkVBeV8TC4fbWefneqW75GtoodGaRPdqc5HqrHtc9QvTTSbpnFv49mURtO32m-4Tfum7jqr1bob_CHZq1TjzdFXnZCnq8vH2U08v7--nU3nsWaQ97Fg2aJgUFSKZwJQaUixUJxXBhRoSkEYoXipixx0RhUsVM60SFmGrMSCinRCzra5nbMvg_G9XNdem6ZRrbGDl8gxJKdCpP9Aw6OQZikL6OkvdGUH14ZDPqk8R8yLQGVbSjvrvTOV7Fy9Vu5dIsiNEbmSWyNyY0QCl8FIGDv5Ch8Wa1P-DH0rCMDFFjDhca-1cdLr2rTalLUzupelrf_e8AFkFJo2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709551158</pqid></control><display><type>article</type><title>Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lu, Li ; Igarashi, Kei M. ; Witter, Menno P. ; Moser, Edvard I. ; Moser, May-Britt</creator><creatorcontrib>Lu, Li ; Igarashi, Kei M. ; Witter, Menno P. ; Moser, Edvard I. ; Moser, May-Britt</creatorcontrib><description>We asked whether the structural heterogeneity of the hippocampal CA3-CA2 axis is reflected in how space is mapped onto place cells in CA3-CA2. Place fields were smaller and sharper in proximal CA3 than in distal CA3 and CA2. The proximodistal shift was accompanied by a progressive loss in the ability of place cells to distinguish configurations of the same spatial environment, as well as a reduction in the extent to which place cells formed uncorrelated representations for different environments. The transition to similar representations was nonlinear, with the sharpest drop in distal CA3. These functional changes along the CA3-CA2 axis mirror gradients in gene expression and connectivity that partly override cytoarchitectonic boundaries between the subfields of the hippocampus. The results point to the CA3-CA2 axis as a functionally graded system with powerful pattern separation at the proximal end, near the dentate gyrus, and stronger pattern completion at the CA2 end.
•Place fields in proximal CA3 are sharper than in distal CA3 and CA2•Rate remapping in place cells decreases gradually along the CA3-to-CA2 axis•Frequency of global remapping events drops sharply near the distal end of CA3•Functionally the CA2 region extends into the distal 10% of CA3
Lu et al. show that ensemble activity of hippocampal place cells is topographically organized along the CA3-to-CA2 axis, with strong pattern separation near the dentate gyrus and strong pattern completion in and near CA2.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2015.07.007</identifier><identifier>PMID: 26298277</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Analysis of Variance ; Animals ; Brain Mapping ; CA2 Region, Hippocampal - cytology ; CA3 Region, Hippocampal - cytology ; Data analysis ; Electric Stimulation ; Experiments ; Feeding Behavior ; Food Deprivation ; Gene expression ; Male ; Models, Neurological ; Nerve Net - physiology ; Neurons - physiology ; Rats ; Rats, Long-Evans ; Rodents ; Spatial Analysis</subject><ispartof>Neuron (Cambridge, Mass.), 2015-09, Vol.87 (5), p.1078-1092</ispartof><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 2, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-964b8608fa74901ac0318a77fe0a0c2209e9a7dc850c42a0ba56c936416d18293</citedby><cites>FETCH-LOGICAL-c605t-964b8608fa74901ac0318a77fe0a0c2209e9a7dc850c42a0ba56c936416d18293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627315006297$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26298277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Igarashi, Kei M.</creatorcontrib><creatorcontrib>Witter, Menno P.</creatorcontrib><creatorcontrib>Moser, Edvard I.</creatorcontrib><creatorcontrib>Moser, May-Britt</creatorcontrib><title>Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>We asked whether the structural heterogeneity of the hippocampal CA3-CA2 axis is reflected in how space is mapped onto place cells in CA3-CA2. Place fields were smaller and sharper in proximal CA3 than in distal CA3 and CA2. The proximodistal shift was accompanied by a progressive loss in the ability of place cells to distinguish configurations of the same spatial environment, as well as a reduction in the extent to which place cells formed uncorrelated representations for different environments. The transition to similar representations was nonlinear, with the sharpest drop in distal CA3. These functional changes along the CA3-CA2 axis mirror gradients in gene expression and connectivity that partly override cytoarchitectonic boundaries between the subfields of the hippocampus. The results point to the CA3-CA2 axis as a functionally graded system with powerful pattern separation at the proximal end, near the dentate gyrus, and stronger pattern completion at the CA2 end.
•Place fields in proximal CA3 are sharper than in distal CA3 and CA2•Rate remapping in place cells decreases gradually along the CA3-to-CA2 axis•Frequency of global remapping events drops sharply near the distal end of CA3•Functionally the CA2 region extends into the distal 10% of CA3
Lu et al. show that ensemble activity of hippocampal place cells is topographically organized along the CA3-to-CA2 axis, with strong pattern separation near the dentate gyrus and strong pattern completion in and near CA2.</description><subject>Action Potentials - physiology</subject><subject>Analysis of Variance</subject><subject>Animals</subject><subject>Brain Mapping</subject><subject>CA2 Region, Hippocampal - cytology</subject><subject>CA3 Region, Hippocampal - cytology</subject><subject>Data analysis</subject><subject>Electric Stimulation</subject><subject>Experiments</subject><subject>Feeding Behavior</subject><subject>Food Deprivation</subject><subject>Gene expression</subject><subject>Male</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neurons - physiology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Rodents</subject><subject>Spatial Analysis</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1LxDAQhoMo7rr6D0QKXry0zqRt0lyEZfELVvSg55BNU7dLt6lJK_rvzbrqwYN4GhieeYeZh5BjhAQB2fkqac3gbJtQwDwBngDwHTJGEDzOUIhdMoZCsJhRno7IgfcrAMxygftkRBkVBeV8TC4fbWefneqW75GtoodGaRPdqc5HqrHtc9QvTTSbpnFv49mURtO32m-4Tfum7jqr1bob_CHZq1TjzdFXnZCnq8vH2U08v7--nU3nsWaQ97Fg2aJgUFSKZwJQaUixUJxXBhRoSkEYoXipixx0RhUsVM60SFmGrMSCinRCzra5nbMvg_G9XNdem6ZRrbGDl8gxJKdCpP9Aw6OQZikL6OkvdGUH14ZDPqk8R8yLQGVbSjvrvTOV7Fy9Vu5dIsiNEbmSWyNyY0QCl8FIGDv5Ch8Wa1P-DH0rCMDFFjDhca-1cdLr2rTalLUzupelrf_e8AFkFJo2</recordid><startdate>20150902</startdate><enddate>20150902</enddate><creator>Lu, Li</creator><creator>Igarashi, Kei M.</creator><creator>Witter, Menno P.</creator><creator>Moser, Edvard I.</creator><creator>Moser, May-Britt</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20150902</creationdate><title>Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus</title><author>Lu, Li ; Igarashi, Kei M. ; Witter, Menno P. ; Moser, Edvard I. ; Moser, May-Britt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-964b8608fa74901ac0318a77fe0a0c2209e9a7dc850c42a0ba56c936416d18293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Action Potentials - physiology</topic><topic>Analysis of Variance</topic><topic>Animals</topic><topic>Brain Mapping</topic><topic>CA2 Region, Hippocampal - cytology</topic><topic>CA3 Region, Hippocampal - cytology</topic><topic>Data analysis</topic><topic>Electric Stimulation</topic><topic>Experiments</topic><topic>Feeding Behavior</topic><topic>Food Deprivation</topic><topic>Gene expression</topic><topic>Male</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neurons - physiology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Rodents</topic><topic>Spatial Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Li</creatorcontrib><creatorcontrib>Igarashi, Kei M.</creatorcontrib><creatorcontrib>Witter, Menno P.</creatorcontrib><creatorcontrib>Moser, Edvard I.</creatorcontrib><creatorcontrib>Moser, May-Britt</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Li</au><au>Igarashi, Kei M.</au><au>Witter, Menno P.</au><au>Moser, Edvard I.</au><au>Moser, May-Britt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2015-09-02</date><risdate>2015</risdate><volume>87</volume><issue>5</issue><spage>1078</spage><epage>1092</epage><pages>1078-1092</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>We asked whether the structural heterogeneity of the hippocampal CA3-CA2 axis is reflected in how space is mapped onto place cells in CA3-CA2. Place fields were smaller and sharper in proximal CA3 than in distal CA3 and CA2. The proximodistal shift was accompanied by a progressive loss in the ability of place cells to distinguish configurations of the same spatial environment, as well as a reduction in the extent to which place cells formed uncorrelated representations for different environments. The transition to similar representations was nonlinear, with the sharpest drop in distal CA3. These functional changes along the CA3-CA2 axis mirror gradients in gene expression and connectivity that partly override cytoarchitectonic boundaries between the subfields of the hippocampus. The results point to the CA3-CA2 axis as a functionally graded system with powerful pattern separation at the proximal end, near the dentate gyrus, and stronger pattern completion at the CA2 end.
•Place fields in proximal CA3 are sharper than in distal CA3 and CA2•Rate remapping in place cells decreases gradually along the CA3-to-CA2 axis•Frequency of global remapping events drops sharply near the distal end of CA3•Functionally the CA2 region extends into the distal 10% of CA3
Lu et al. show that ensemble activity of hippocampal place cells is topographically organized along the CA3-to-CA2 axis, with strong pattern separation near the dentate gyrus and strong pattern completion in and near CA2.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26298277</pmid><doi>10.1016/j.neuron.2015.07.007</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2015-09, Vol.87 (5), p.1078-1092 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1717493993 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Action Potentials - physiology Analysis of Variance Animals Brain Mapping CA2 Region, Hippocampal - cytology CA3 Region, Hippocampal - cytology Data analysis Electric Stimulation Experiments Feeding Behavior Food Deprivation Gene expression Male Models, Neurological Nerve Net - physiology Neurons - physiology Rats Rats, Long-Evans Rodents Spatial Analysis |
title | Topography of Place Maps along the CA3-to-CA2 Axis of the Hippocampus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topography%20of%20Place%20Maps%20along%20the%20CA3-to-CA2%20Axis%20of%20the%20Hippocampus&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Lu,%20Li&rft.date=2015-09-02&rft.volume=87&rft.issue=5&rft.spage=1078&rft.epage=1092&rft.pages=1078-1092&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2015.07.007&rft_dat=%3Cproquest_cross%3E1717493993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709551158&rft_id=info:pmid/26298277&rft_els_id=S0896627315006297&rfr_iscdi=true |