Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity
The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent p...
Gespeichert in:
Veröffentlicht in: | BioEssays 2015-09, Vol.37 (9), p.996-1004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | 9 |
container_start_page | 996 |
container_title | BioEssays |
container_volume | 37 |
creator | Petrovic, Milan Schmucker, Dietmar |
description | The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms. |
doi_str_mv | 10.1002/bies.201400222 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1717489131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3785992641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</originalsourceid><addsrcrecordid>eNqNkkFv0zAYhiMEYt3gyhEsceGS4s9J7ITbOm1l0hgHNnG0HOdL65HYwU5Ze-Mn8Bv5JbjKqBAXuNiy9byPbL9OkhdA50Ape1sbDHNGIY8Lxh4lMygYpFCK8nEyo4wXacVycZQch3BHKa04y58mR4xDmVNezRJ3unVWdeTeeGNXxFhicePjRoPfsHNDj3Z8R26UX-H48_sPYxscMA52JD3qtbIm9IGssRvI6AiGUdWdCWsyeNQmGGeJsg3Rrh863Jpx9yx50qou4POH-SS5vTi_OXufXn1cXp6dXqW6ECVLq6at8jaPd-IZ1apWVKkiK0XLVdEKaHVd19i0JasbUCwmcuBUF2UmgIKiOjtJ3kzewbuvm3gu2ZugseuURbcJEgSIvKwgg_9AKS-E4AWL6Ou_0Du38fH9JgrKAiCP1HyitHcheGzl4E2v_E4ClfvW5L41eWgtBl4-aDd1j80B_11TBKoJuDcd7v6hk4vL809_ytMpa8KI20NW-S-Si0wU8vP1UtLlgl_TxQe5519NfKucVCtvgrzd63j8PgAs49kv7ki9SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706185114</pqid></control><display><type>article</type><title>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Petrovic, Milan ; Schmucker, Dietmar</creator><creatorcontrib>Petrovic, Milan ; Schmucker, Dietmar</creatorcontrib><description>The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.201400222</identifier><identifier>PMID: 26184069</identifier><identifier>CODEN: BIOEEJ</identifier><language>eng</language><publisher>United States: Published for ICSU Press by Cambridge University Press</publisher><subject>Animals ; axon guidance ; axon-axon interactions ; axonal branching ; axonal tiling ; Axons - physiology ; branching ; cell recognition molecules ; chemoaffinity ; Growth Cones - physiology ; Invertebrates ; neural development ; neurodevelopment ; neurons ; Neurons - physiology ; Receptors, Cell Surface - metabolism ; sensory maps ; Smell - physiology ; target-independent wiring ; Visual Pathways - physiology</subject><ispartof>BioEssays, 2015-09, Vol.37 (9), p.996-1004</ispartof><rights>2015 WILEY Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</citedby><cites>FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.201400222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.201400222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26184069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrovic, Milan</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><title>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</title><title>BioEssays</title><addtitle>BioEssays</addtitle><description>The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.</description><subject>Animals</subject><subject>axon guidance</subject><subject>axon-axon interactions</subject><subject>axonal branching</subject><subject>axonal tiling</subject><subject>Axons - physiology</subject><subject>branching</subject><subject>cell recognition molecules</subject><subject>chemoaffinity</subject><subject>Growth Cones - physiology</subject><subject>Invertebrates</subject><subject>neural development</subject><subject>neurodevelopment</subject><subject>neurons</subject><subject>Neurons - physiology</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>sensory maps</subject><subject>Smell - physiology</subject><subject>target-independent wiring</subject><subject>Visual Pathways - physiology</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFv0zAYhiMEYt3gyhEsceGS4s9J7ITbOm1l0hgHNnG0HOdL65HYwU5Ze-Mn8Bv5JbjKqBAXuNiy9byPbL9OkhdA50Ape1sbDHNGIY8Lxh4lMygYpFCK8nEyo4wXacVycZQch3BHKa04y58mR4xDmVNezRJ3unVWdeTeeGNXxFhicePjRoPfsHNDj3Z8R26UX-H48_sPYxscMA52JD3qtbIm9IGssRvI6AiGUdWdCWsyeNQmGGeJsg3Rrh863Jpx9yx50qou4POH-SS5vTi_OXufXn1cXp6dXqW6ECVLq6at8jaPd-IZ1apWVKkiK0XLVdEKaHVd19i0JasbUCwmcuBUF2UmgIKiOjtJ3kzewbuvm3gu2ZugseuURbcJEgSIvKwgg_9AKS-E4AWL6Ou_0Du38fH9JgrKAiCP1HyitHcheGzl4E2v_E4ClfvW5L41eWgtBl4-aDd1j80B_11TBKoJuDcd7v6hk4vL809_ytMpa8KI20NW-S-Si0wU8vP1UtLlgl_TxQe5519NfKucVCtvgrzd63j8PgAs49kv7ki9SA</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Petrovic, Milan</creator><creator>Schmucker, Dietmar</creator><general>Published for ICSU Press by Cambridge University Press</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</title><author>Petrovic, Milan ; Schmucker, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>axon guidance</topic><topic>axon-axon interactions</topic><topic>axonal branching</topic><topic>axonal tiling</topic><topic>Axons - physiology</topic><topic>branching</topic><topic>cell recognition molecules</topic><topic>chemoaffinity</topic><topic>Growth Cones - physiology</topic><topic>Invertebrates</topic><topic>neural development</topic><topic>neurodevelopment</topic><topic>neurons</topic><topic>Neurons - physiology</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>sensory maps</topic><topic>Smell - physiology</topic><topic>target-independent wiring</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, Milan</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, Milan</au><au>Schmucker, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</atitle><jtitle>BioEssays</jtitle><addtitle>BioEssays</addtitle><date>2015-09</date><risdate>2015</risdate><volume>37</volume><issue>9</issue><spage>996</spage><epage>1004</epage><pages>996-1004</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><coden>BIOEEJ</coden><abstract>The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.</abstract><cop>United States</cop><pub>Published for ICSU Press by Cambridge University Press</pub><pmid>26184069</pmid><doi>10.1002/bies.201400222</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-9247 |
ispartof | BioEssays, 2015-09, Vol.37 (9), p.996-1004 |
issn | 0265-9247 1521-1878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1717489131 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals axon guidance axon-axon interactions axonal branching axonal tiling Axons - physiology branching cell recognition molecules chemoaffinity Growth Cones - physiology Invertebrates neural development neurodevelopment neurons Neurons - physiology Receptors, Cell Surface - metabolism sensory maps Smell - physiology target-independent wiring Visual Pathways - physiology |
title | Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20wiring%20in%20neural%20development:%20Target%E2%80%90independent%20mechanisms%20help%20to%20establish%20precision%20and%20complexity&rft.jtitle=BioEssays&rft.au=Petrovic,%20Milan&rft.date=2015-09&rft.volume=37&rft.issue=9&rft.spage=996&rft.epage=1004&rft.pages=996-1004&rft.issn=0265-9247&rft.eissn=1521-1878&rft.coden=BIOEEJ&rft_id=info:doi/10.1002/bies.201400222&rft_dat=%3Cproquest_cross%3E3785992641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706185114&rft_id=info:pmid/26184069&rfr_iscdi=true |