Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity

The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2015-09, Vol.37 (9), p.996-1004
Hauptverfasser: Petrovic, Milan, Schmucker, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 9
container_start_page 996
container_title BioEssays
container_volume 37
creator Petrovic, Milan
Schmucker, Dietmar
description The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.
doi_str_mv 10.1002/bies.201400222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1717489131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3785992641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</originalsourceid><addsrcrecordid>eNqNkkFv0zAYhiMEYt3gyhEsceGS4s9J7ITbOm1l0hgHNnG0HOdL65HYwU5Ze-Mn8Bv5JbjKqBAXuNiy9byPbL9OkhdA50Ape1sbDHNGIY8Lxh4lMygYpFCK8nEyo4wXacVycZQch3BHKa04y58mR4xDmVNezRJ3unVWdeTeeGNXxFhicePjRoPfsHNDj3Z8R26UX-H48_sPYxscMA52JD3qtbIm9IGssRvI6AiGUdWdCWsyeNQmGGeJsg3Rrh863Jpx9yx50qou4POH-SS5vTi_OXufXn1cXp6dXqW6ECVLq6at8jaPd-IZ1apWVKkiK0XLVdEKaHVd19i0JasbUCwmcuBUF2UmgIKiOjtJ3kzewbuvm3gu2ZugseuURbcJEgSIvKwgg_9AKS-E4AWL6Ou_0Du38fH9JgrKAiCP1HyitHcheGzl4E2v_E4ClfvW5L41eWgtBl4-aDd1j80B_11TBKoJuDcd7v6hk4vL809_ytMpa8KI20NW-S-Si0wU8vP1UtLlgl_TxQe5519NfKucVCtvgrzd63j8PgAs49kv7ki9SA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706185114</pqid></control><display><type>article</type><title>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Petrovic, Milan ; Schmucker, Dietmar</creator><creatorcontrib>Petrovic, Milan ; Schmucker, Dietmar</creatorcontrib><description>The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.</description><identifier>ISSN: 0265-9247</identifier><identifier>EISSN: 1521-1878</identifier><identifier>DOI: 10.1002/bies.201400222</identifier><identifier>PMID: 26184069</identifier><identifier>CODEN: BIOEEJ</identifier><language>eng</language><publisher>United States: Published for ICSU Press by Cambridge University Press</publisher><subject>Animals ; axon guidance ; axon-axon interactions ; axonal branching ; axonal tiling ; Axons - physiology ; branching ; cell recognition molecules ; chemoaffinity ; Growth Cones - physiology ; Invertebrates ; neural development ; neurodevelopment ; neurons ; Neurons - physiology ; Receptors, Cell Surface - metabolism ; sensory maps ; Smell - physiology ; target-independent wiring ; Visual Pathways - physiology</subject><ispartof>BioEssays, 2015-09, Vol.37 (9), p.996-1004</ispartof><rights>2015 WILEY Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</citedby><cites>FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbies.201400222$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbies.201400222$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26184069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrovic, Milan</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><title>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</title><title>BioEssays</title><addtitle>BioEssays</addtitle><description>The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.</description><subject>Animals</subject><subject>axon guidance</subject><subject>axon-axon interactions</subject><subject>axonal branching</subject><subject>axonal tiling</subject><subject>Axons - physiology</subject><subject>branching</subject><subject>cell recognition molecules</subject><subject>chemoaffinity</subject><subject>Growth Cones - physiology</subject><subject>Invertebrates</subject><subject>neural development</subject><subject>neurodevelopment</subject><subject>neurons</subject><subject>Neurons - physiology</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>sensory maps</subject><subject>Smell - physiology</subject><subject>target-independent wiring</subject><subject>Visual Pathways - physiology</subject><issn>0265-9247</issn><issn>1521-1878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkkFv0zAYhiMEYt3gyhEsceGS4s9J7ITbOm1l0hgHNnG0HOdL65HYwU5Ze-Mn8Bv5JbjKqBAXuNiy9byPbL9OkhdA50Ape1sbDHNGIY8Lxh4lMygYpFCK8nEyo4wXacVycZQch3BHKa04y58mR4xDmVNezRJ3unVWdeTeeGNXxFhicePjRoPfsHNDj3Z8R26UX-H48_sPYxscMA52JD3qtbIm9IGssRvI6AiGUdWdCWsyeNQmGGeJsg3Rrh863Jpx9yx50qou4POH-SS5vTi_OXufXn1cXp6dXqW6ECVLq6at8jaPd-IZ1apWVKkiK0XLVdEKaHVd19i0JasbUCwmcuBUF2UmgIKiOjtJ3kzewbuvm3gu2ZugseuURbcJEgSIvKwgg_9AKS-E4AWL6Ou_0Du38fH9JgrKAiCP1HyitHcheGzl4E2v_E4ClfvW5L41eWgtBl4-aDd1j80B_11TBKoJuDcd7v6hk4vL809_ytMpa8KI20NW-S-Si0wU8vP1UtLlgl_TxQe5519NfKucVCtvgrzd63j8PgAs49kv7ki9SA</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Petrovic, Milan</creator><creator>Schmucker, Dietmar</creator><general>Published for ICSU Press by Cambridge University Press</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</title><author>Petrovic, Milan ; Schmucker, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5782-9df94f4022630caba0aa5387f6a5f71fcbbbedf82bd1a27824160c5837101a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>axon guidance</topic><topic>axon-axon interactions</topic><topic>axonal branching</topic><topic>axonal tiling</topic><topic>Axons - physiology</topic><topic>branching</topic><topic>cell recognition molecules</topic><topic>chemoaffinity</topic><topic>Growth Cones - physiology</topic><topic>Invertebrates</topic><topic>neural development</topic><topic>neurodevelopment</topic><topic>neurons</topic><topic>Neurons - physiology</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>sensory maps</topic><topic>Smell - physiology</topic><topic>target-independent wiring</topic><topic>Visual Pathways - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, Milan</creatorcontrib><creatorcontrib>Schmucker, Dietmar</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BioEssays</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, Milan</au><au>Schmucker, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity</atitle><jtitle>BioEssays</jtitle><addtitle>BioEssays</addtitle><date>2015-09</date><risdate>2015</risdate><volume>37</volume><issue>9</issue><spage>996</spage><epage>1004</epage><pages>996-1004</pages><issn>0265-9247</issn><eissn>1521-1878</eissn><coden>BIOEEJ</coden><abstract>The connectivity patterns of many neural circuits are highly ordered and often impressively complex. The intricate order and complexity of neuronal wiring remain not only a challenge for questions related to circuit functions but also for our understanding of how they develop with such an apparent precision. The chemotropic guidance of the growing axon by target‐derived cues represents a central paradigm for how neurons get connected with the correct target cells. However, many studies reveal a remarkable variety of important target‐independent wiring mechanisms. These mechanisms include axonal sorting, axonal tiling, growth cone polarization, as well as cell‐intrinsic mechanisms underlying growth cone sprouting, and neurite branching. Our review focuses on target independent wiring mechanisms and in particular on recent progress emerging from studies on three different sensory systems: olfactory, visual, and somatosensory. We discuss molecular mechanisms that operate during axon‐axon interactions or constitute axon‐intrinsic functions and outline how they complement the well‐known target‐dependent wiring mechanisms.</abstract><cop>United States</cop><pub>Published for ICSU Press by Cambridge University Press</pub><pmid>26184069</pmid><doi>10.1002/bies.201400222</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0265-9247
ispartof BioEssays, 2015-09, Vol.37 (9), p.996-1004
issn 0265-9247
1521-1878
language eng
recordid cdi_proquest_miscellaneous_1717489131
source MEDLINE; Access via Wiley Online Library
subjects Animals
axon guidance
axon-axon interactions
axonal branching
axonal tiling
Axons - physiology
branching
cell recognition molecules
chemoaffinity
Growth Cones - physiology
Invertebrates
neural development
neurodevelopment
neurons
Neurons - physiology
Receptors, Cell Surface - metabolism
sensory maps
Smell - physiology
target-independent wiring
Visual Pathways - physiology
title Axonal wiring in neural development: Target‐independent mechanisms help to establish precision and complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20wiring%20in%20neural%20development:%20Target%E2%80%90independent%20mechanisms%20help%20to%20establish%20precision%20and%20complexity&rft.jtitle=BioEssays&rft.au=Petrovic,%20Milan&rft.date=2015-09&rft.volume=37&rft.issue=9&rft.spage=996&rft.epage=1004&rft.pages=996-1004&rft.issn=0265-9247&rft.eissn=1521-1878&rft.coden=BIOEEJ&rft_id=info:doi/10.1002/bies.201400222&rft_dat=%3Cproquest_cross%3E3785992641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706185114&rft_id=info:pmid/26184069&rfr_iscdi=true