Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides

Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (33), p.10342-10347
Hauptverfasser: Allred, Benjamin E., Rupert, Peter B., Gauny, Stacey S., An, Dahlia D., Ralston, Corie Y., Sturzbecher-Hoehne, Manuel, Strong, Roland K., Abergel, Rebecca J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10347
container_issue 33
container_start_page 10342
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Allred, Benjamin E.
Rupert, Peter B.
Gauny, Stacey S.
An, Dahlia D.
Ralston, Corie Y.
Sturzbecher-Hoehne, Manuel
Strong, Roland K.
Abergel, Rebecca J.
description Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking offelements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.
doi_str_mv 10.1073/pnas.1508902112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1717488386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26464897</jstor_id><sourcerecordid>26464897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-6b2b402e5335c21d31289268420c8c7dc105cb4d8537ce9a9cf9e71476f1e57c3</originalsourceid><addsrcrecordid>eNpdkU2PFCEQhonRuOPq2ZOmoxcP9i7FR0NfTMzGr2QTY9QzYarpXcYemAXaRH-9jD2OqycgPPVQxUvIY6BnQBU_3wWbz0BS3VMGwO6QFdAe2k709C5ZUcpUqwUTJ-RBzhtKaS81vU9OWMcE5ZyuyKfPfnApop18aLdu8La4oUkO41Xwxcfwssku5Lr9aZejDUODbprmyaZm3hX7zTVxbCwWH6orPyT3Rjtl9-iwnpKvb998uXjfXn589-Hi9WWLkunSdmu2FpQ5yblEBgMHpnvW1W4palQDApW4FoOWXKHrbY9j7xQI1Y3gpEJ-Sl4t3t28ro2jCyXZyeyS39r0w0Trzb83wV-bq_jdCCkUk7oKni2CmIs3GX1xeI0xBIfFAOMSBKvQi8MrKd7MLhez9Xk_vg0uztmAAiW05rqr6PP_0E2cU6h_UCnaScWFhEqdLxSmmHNy47FjoGafqdlnav5mWiue3h70yP8JsQLNAdhXHnXADOdVyX-P8WRBNrnEdEshOqF7xX8B6w6w-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1706573451</pqid></control><display><type>article</type><title>Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Allred, Benjamin E. ; Rupert, Peter B. ; Gauny, Stacey S. ; An, Dahlia D. ; Ralston, Corie Y. ; Sturzbecher-Hoehne, Manuel ; Strong, Roland K. ; Abergel, Rebecca J.</creator><creatorcontrib>Allred, Benjamin E. ; Rupert, Peter B. ; Gauny, Stacey S. ; An, Dahlia D. ; Ralston, Corie Y. ; Sturzbecher-Hoehne, Manuel ; Strong, Roland K. ; Abergel, Rebecca J. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking offelements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1508902112</identifier><identifier>PMID: 26240330</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>actinide transport ; Actinoid Series Elements - chemistry ; Actinoid Series Elements - pharmacokinetics ; antenna effect ; Biochemistry ; Biological Sciences ; Carrier Proteins - chemistry ; Carrier Proteins - physiology ; Chelating Agents - chemistry ; Crystallography ; Crystallography, X-Ray ; Humans ; Hydrogen-Ion Concentration ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ions ; Kinetics ; Lanthanoid Series Elements ; Ligands ; Luminescence ; luminescence spectroscopy ; Metals - chemistry ; Molecular Conformation ; Nuclear Power Plants ; Photochemistry ; Physical Sciences ; Protein Binding ; protein crystallography ; Proteins ; Proteins - chemistry ; Radioactive Hazard Release ; siderocalin ; Spectrophotometry ; Static Electricity ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (33), p.10342-10347</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 18, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-6b2b402e5335c21d31289268420c8c7dc105cb4d8537ce9a9cf9e71476f1e57c3</citedby><cites>FETCH-LOGICAL-c528t-6b2b402e5335c21d31289268420c8c7dc105cb4d8537ce9a9cf9e71476f1e57c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/33.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26464897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26464897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26240330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1235142$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Allred, Benjamin E.</creatorcontrib><creatorcontrib>Rupert, Peter B.</creatorcontrib><creatorcontrib>Gauny, Stacey S.</creatorcontrib><creatorcontrib>An, Dahlia D.</creatorcontrib><creatorcontrib>Ralston, Corie Y.</creatorcontrib><creatorcontrib>Sturzbecher-Hoehne, Manuel</creatorcontrib><creatorcontrib>Strong, Roland K.</creatorcontrib><creatorcontrib>Abergel, Rebecca J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking offelements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.</description><subject>actinide transport</subject><subject>Actinoid Series Elements - chemistry</subject><subject>Actinoid Series Elements - pharmacokinetics</subject><subject>antenna effect</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - physiology</subject><subject>Chelating Agents - chemistry</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Lanthanoid Series Elements</subject><subject>Ligands</subject><subject>Luminescence</subject><subject>luminescence spectroscopy</subject><subject>Metals - chemistry</subject><subject>Molecular Conformation</subject><subject>Nuclear Power Plants</subject><subject>Photochemistry</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>protein crystallography</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Radioactive Hazard Release</subject><subject>siderocalin</subject><subject>Spectrophotometry</subject><subject>Static Electricity</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU2PFCEQhonRuOPq2ZOmoxcP9i7FR0NfTMzGr2QTY9QzYarpXcYemAXaRH-9jD2OqycgPPVQxUvIY6BnQBU_3wWbz0BS3VMGwO6QFdAe2k709C5ZUcpUqwUTJ-RBzhtKaS81vU9OWMcE5ZyuyKfPfnApop18aLdu8La4oUkO41Xwxcfwssku5Lr9aZejDUODbprmyaZm3hX7zTVxbCwWH6orPyT3Rjtl9-iwnpKvb998uXjfXn589-Hi9WWLkunSdmu2FpQ5yblEBgMHpnvW1W4palQDApW4FoOWXKHrbY9j7xQI1Y3gpEJ-Sl4t3t28ro2jCyXZyeyS39r0w0Trzb83wV-bq_jdCCkUk7oKni2CmIs3GX1xeI0xBIfFAOMSBKvQi8MrKd7MLhez9Xk_vg0uztmAAiW05rqr6PP_0E2cU6h_UCnaScWFhEqdLxSmmHNy47FjoGafqdlnav5mWiue3h70yP8JsQLNAdhXHnXADOdVyX-P8WRBNrnEdEshOqF7xX8B6w6w-g</recordid><startdate>20150818</startdate><enddate>20150818</enddate><creator>Allred, Benjamin E.</creator><creator>Rupert, Peter B.</creator><creator>Gauny, Stacey S.</creator><creator>An, Dahlia D.</creator><creator>Ralston, Corie Y.</creator><creator>Sturzbecher-Hoehne, Manuel</creator><creator>Strong, Roland K.</creator><creator>Abergel, Rebecca J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>Proceedings of the National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>SOI</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20150818</creationdate><title>Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides</title><author>Allred, Benjamin E. ; Rupert, Peter B. ; Gauny, Stacey S. ; An, Dahlia D. ; Ralston, Corie Y. ; Sturzbecher-Hoehne, Manuel ; Strong, Roland K. ; Abergel, Rebecca J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-6b2b402e5335c21d31289268420c8c7dc105cb4d8537ce9a9cf9e71476f1e57c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>actinide transport</topic><topic>Actinoid Series Elements - chemistry</topic><topic>Actinoid Series Elements - pharmacokinetics</topic><topic>antenna effect</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - physiology</topic><topic>Chelating Agents - chemistry</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Lanthanoid Series Elements</topic><topic>Ligands</topic><topic>Luminescence</topic><topic>luminescence spectroscopy</topic><topic>Metals - chemistry</topic><topic>Molecular Conformation</topic><topic>Nuclear Power Plants</topic><topic>Photochemistry</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>protein crystallography</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Radioactive Hazard Release</topic><topic>siderocalin</topic><topic>Spectrophotometry</topic><topic>Static Electricity</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allred, Benjamin E.</creatorcontrib><creatorcontrib>Rupert, Peter B.</creatorcontrib><creatorcontrib>Gauny, Stacey S.</creatorcontrib><creatorcontrib>An, Dahlia D.</creatorcontrib><creatorcontrib>Ralston, Corie Y.</creatorcontrib><creatorcontrib>Sturzbecher-Hoehne, Manuel</creatorcontrib><creatorcontrib>Strong, Roland K.</creatorcontrib><creatorcontrib>Abergel, Rebecca J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allred, Benjamin E.</au><au>Rupert, Peter B.</au><au>Gauny, Stacey S.</au><au>An, Dahlia D.</au><au>Ralston, Corie Y.</au><au>Sturzbecher-Hoehne, Manuel</au><au>Strong, Roland K.</au><au>Abergel, Rebecca J.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-08-18</date><risdate>2015</risdate><volume>112</volume><issue>33</issue><spage>10342</spage><epage>10347</epage><pages>10342-10347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin–transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein–ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking offelements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26240330</pmid><doi>10.1073/pnas.1508902112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-08, Vol.112 (33), p.10342-10347
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1717488386
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects actinide transport
Actinoid Series Elements - chemistry
Actinoid Series Elements - pharmacokinetics
antenna effect
Biochemistry
Biological Sciences
Carrier Proteins - chemistry
Carrier Proteins - physiology
Chelating Agents - chemistry
Crystallography
Crystallography, X-Ray
Humans
Hydrogen-Ion Concentration
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ions
Kinetics
Lanthanoid Series Elements
Ligands
Luminescence
luminescence spectroscopy
Metals - chemistry
Molecular Conformation
Nuclear Power Plants
Photochemistry
Physical Sciences
Protein Binding
protein crystallography
Proteins
Proteins - chemistry
Radioactive Hazard Release
siderocalin
Spectrophotometry
Static Electricity
X-Ray Diffraction
title Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Siderocalin-mediated%20recognition,%20sensitization,%20and%20cellular%20uptake%20of%20actinides&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Allred,%20Benjamin%20E.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2015-08-18&rft.volume=112&rft.issue=33&rft.spage=10342&rft.epage=10347&rft.pages=10342-10347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1508902112&rft_dat=%3Cjstor_proqu%3E26464897%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1706573451&rft_id=info:pmid/26240330&rft_jstor_id=26464897&rfr_iscdi=true