Validation of metabolomic models for prediction of early-onset preeclampsia

Objective We sought to perform validation studies of previously published and newly derived first-trimester metabolomic algorithms for prediction of early preeclampsia (PE). Study Design Nuclear magnetic resonance–based metabolomic analysis was performed on first-trimester serum in 50 women who subs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of obstetrics and gynecology 2015-10, Vol.213 (4), p.530.e1-530.e10
Hauptverfasser: Bahado-Singh, Ray O., MD, MBA, Syngelaki, Argyro, Akolekar, Ranjit, MD, Mandal, Rupsari, PhD, Bjondahl, Trent C., PhD, Han, Beomsoo, PhD, Dong, Edison, BSc, Bauer, Samuel, MD, Alpay-Savasan, Zeynep, MD, Graham, Stewart, PhD, Turkoglu, Onur, MD, Wishart, David S., PhD, Nicolaides, Kypros H., MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530.e10
container_issue 4
container_start_page 530.e1
container_title American journal of obstetrics and gynecology
container_volume 213
creator Bahado-Singh, Ray O., MD, MBA
Syngelaki, Argyro
Akolekar, Ranjit, MD
Mandal, Rupsari, PhD
Bjondahl, Trent C., PhD
Han, Beomsoo, PhD
Dong, Edison, BSc
Bauer, Samuel, MD
Alpay-Savasan, Zeynep, MD
Graham, Stewart, PhD
Turkoglu, Onur, MD
Wishart, David S., PhD
Nicolaides, Kypros H., MD
description Objective We sought to perform validation studies of previously published and newly derived first-trimester metabolomic algorithms for prediction of early preeclampsia (PE). Study Design Nuclear magnetic resonance–based metabolomic analysis was performed on first-trimester serum in 50 women who subsequently developed early PE and in 108 first-trimester controls. Random stratification and allocation was used to divide cases into a discovery group (30 early PE and 65 controls) for generation of the biomarker model(s) and a validation group (20 early PE and 43 controls) to ensure an unbiased assessment of the predictive algorithms. Cross-validation testing on the different algorithms was performed to confirm their robustness before use. Metabolites, demographic features, clinical characteristics, and uterine Doppler pulsatility index data were evaluated. Area under the receiver operator characteristic curve (AUC), 95% confidence interval (CI), sensitivity, and specificity of the biomarker models were derived. Results Validation testing found that the metabolite-only model had an AUC of 0.835 (95% CI, 0.769–0.941) with a 75% sensitivity and 74.4% specificity and for the metabolites plus uterine Doppler pulsatility index model it was 0.916 (95% CI, 0.836–0.996), 90%, and 88.4%, respectively. Predictive metabolites included arginine and 2-hydroxybutyrate, which are known to be involved in vascular dilation, and insulin resistance and impaired glucose regulation, respectively. Conclusion We found confirmatory evidence that first-trimester metabolomic biomarkers can predict future development of early PE.
doi_str_mv 10.1016/j.ajog.2015.06.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1717482472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002937815006572</els_id><sourcerecordid>1717482472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-91d17134adc999cb620b449868462545a070a530f8013bd2779eb229d816f4b73</originalsourceid><addsrcrecordid>eNp9kcFu1DAURS0EokPpD7BAWbJJeHYcO5YQEqpaWlGJBdCt5dgvyMGJBztTaf4eR9OyYMHKsnzu1fN5hLyh0FCg4v3UmCn-bBjQrgHRAOfPyI6CkrXoRf-c7ACA1aqV_Rl5lfO0XZliL8kZE5QKUGpHvtyb4J1ZfVyqOFYzrmaIIc7eVnN0GHI1xlTtEzpvnyA0KRzruGRctxe0wcz77M1r8mI0IePF43lOflxffb-8qe--fr69_HRXW97TtVbUUUlbbpxVStlBMBg4V2VkLljHOwMSTNfC2ANtB8ekVDiUwV1PxcgH2Z6Td6fefYq_D5hXPftsMQSzYDxkXdol7xmXrKDshNoUc0446n3ys0lHTUFvEvWkN4l6k6hB6CKxhN4-9h-GGd3fyJO1Anw4AcUPPnhMOluPiy2SEtpVu-j_3__xn7gNfvHWhF94xDzFQ1qKP011Zhr0t21v2xZpByC68qs_272WrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717482472</pqid></control><display><type>article</type><title>Validation of metabolomic models for prediction of early-onset preeclampsia</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Bahado-Singh, Ray O., MD, MBA ; Syngelaki, Argyro ; Akolekar, Ranjit, MD ; Mandal, Rupsari, PhD ; Bjondahl, Trent C., PhD ; Han, Beomsoo, PhD ; Dong, Edison, BSc ; Bauer, Samuel, MD ; Alpay-Savasan, Zeynep, MD ; Graham, Stewart, PhD ; Turkoglu, Onur, MD ; Wishart, David S., PhD ; Nicolaides, Kypros H., MD</creator><creatorcontrib>Bahado-Singh, Ray O., MD, MBA ; Syngelaki, Argyro ; Akolekar, Ranjit, MD ; Mandal, Rupsari, PhD ; Bjondahl, Trent C., PhD ; Han, Beomsoo, PhD ; Dong, Edison, BSc ; Bauer, Samuel, MD ; Alpay-Savasan, Zeynep, MD ; Graham, Stewart, PhD ; Turkoglu, Onur, MD ; Wishart, David S., PhD ; Nicolaides, Kypros H., MD</creatorcontrib><description>Objective We sought to perform validation studies of previously published and newly derived first-trimester metabolomic algorithms for prediction of early preeclampsia (PE). Study Design Nuclear magnetic resonance–based metabolomic analysis was performed on first-trimester serum in 50 women who subsequently developed early PE and in 108 first-trimester controls. Random stratification and allocation was used to divide cases into a discovery group (30 early PE and 65 controls) for generation of the biomarker model(s) and a validation group (20 early PE and 43 controls) to ensure an unbiased assessment of the predictive algorithms. Cross-validation testing on the different algorithms was performed to confirm their robustness before use. Metabolites, demographic features, clinical characteristics, and uterine Doppler pulsatility index data were evaluated. Area under the receiver operator characteristic curve (AUC), 95% confidence interval (CI), sensitivity, and specificity of the biomarker models were derived. Results Validation testing found that the metabolite-only model had an AUC of 0.835 (95% CI, 0.769–0.941) with a 75% sensitivity and 74.4% specificity and for the metabolites plus uterine Doppler pulsatility index model it was 0.916 (95% CI, 0.836–0.996), 90%, and 88.4%, respectively. Predictive metabolites included arginine and 2-hydroxybutyrate, which are known to be involved in vascular dilation, and insulin resistance and impaired glucose regulation, respectively. Conclusion We found confirmatory evidence that first-trimester metabolomic biomarkers can predict future development of early PE.</description><identifier>ISSN: 0002-9378</identifier><identifier>EISSN: 1097-6868</identifier><identifier>DOI: 10.1016/j.ajog.2015.06.044</identifier><identifier>PMID: 26116099</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Area Under Curve ; Biomarkers - metabolism ; Case-Control Studies ; early-onset preeclampsia ; Female ; Humans ; Magnetic Resonance Spectroscopy ; Metabolomics ; Obstetrics and Gynecology ; Pre-Eclampsia - diagnosis ; Pre-Eclampsia - diagnostic imaging ; Pre-Eclampsia - metabolism ; Pregnancy ; Pregnancy Trimester, First - metabolism ; Pulsatile Flow ; Ultrasonography, Doppler ; Uterine Artery - diagnostic imaging ; Young Adult</subject><ispartof>American journal of obstetrics and gynecology, 2015-10, Vol.213 (4), p.530.e1-530.e10</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-91d17134adc999cb620b449868462545a070a530f8013bd2779eb229d816f4b73</citedby><cites>FETCH-LOGICAL-c481t-91d17134adc999cb620b449868462545a070a530f8013bd2779eb229d816f4b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002937815006572$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26116099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bahado-Singh, Ray O., MD, MBA</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>Akolekar, Ranjit, MD</creatorcontrib><creatorcontrib>Mandal, Rupsari, PhD</creatorcontrib><creatorcontrib>Bjondahl, Trent C., PhD</creatorcontrib><creatorcontrib>Han, Beomsoo, PhD</creatorcontrib><creatorcontrib>Dong, Edison, BSc</creatorcontrib><creatorcontrib>Bauer, Samuel, MD</creatorcontrib><creatorcontrib>Alpay-Savasan, Zeynep, MD</creatorcontrib><creatorcontrib>Graham, Stewart, PhD</creatorcontrib><creatorcontrib>Turkoglu, Onur, MD</creatorcontrib><creatorcontrib>Wishart, David S., PhD</creatorcontrib><creatorcontrib>Nicolaides, Kypros H., MD</creatorcontrib><title>Validation of metabolomic models for prediction of early-onset preeclampsia</title><title>American journal of obstetrics and gynecology</title><addtitle>Am J Obstet Gynecol</addtitle><description>Objective We sought to perform validation studies of previously published and newly derived first-trimester metabolomic algorithms for prediction of early preeclampsia (PE). Study Design Nuclear magnetic resonance–based metabolomic analysis was performed on first-trimester serum in 50 women who subsequently developed early PE and in 108 first-trimester controls. Random stratification and allocation was used to divide cases into a discovery group (30 early PE and 65 controls) for generation of the biomarker model(s) and a validation group (20 early PE and 43 controls) to ensure an unbiased assessment of the predictive algorithms. Cross-validation testing on the different algorithms was performed to confirm their robustness before use. Metabolites, demographic features, clinical characteristics, and uterine Doppler pulsatility index data were evaluated. Area under the receiver operator characteristic curve (AUC), 95% confidence interval (CI), sensitivity, and specificity of the biomarker models were derived. Results Validation testing found that the metabolite-only model had an AUC of 0.835 (95% CI, 0.769–0.941) with a 75% sensitivity and 74.4% specificity and for the metabolites plus uterine Doppler pulsatility index model it was 0.916 (95% CI, 0.836–0.996), 90%, and 88.4%, respectively. Predictive metabolites included arginine and 2-hydroxybutyrate, which are known to be involved in vascular dilation, and insulin resistance and impaired glucose regulation, respectively. Conclusion We found confirmatory evidence that first-trimester metabolomic biomarkers can predict future development of early PE.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Area Under Curve</subject><subject>Biomarkers - metabolism</subject><subject>Case-Control Studies</subject><subject>early-onset preeclampsia</subject><subject>Female</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolomics</subject><subject>Obstetrics and Gynecology</subject><subject>Pre-Eclampsia - diagnosis</subject><subject>Pre-Eclampsia - diagnostic imaging</subject><subject>Pre-Eclampsia - metabolism</subject><subject>Pregnancy</subject><subject>Pregnancy Trimester, First - metabolism</subject><subject>Pulsatile Flow</subject><subject>Ultrasonography, Doppler</subject><subject>Uterine Artery - diagnostic imaging</subject><subject>Young Adult</subject><issn>0002-9378</issn><issn>1097-6868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAURS0EokPpD7BAWbJJeHYcO5YQEqpaWlGJBdCt5dgvyMGJBztTaf4eR9OyYMHKsnzu1fN5hLyh0FCg4v3UmCn-bBjQrgHRAOfPyI6CkrXoRf-c7ACA1aqV_Rl5lfO0XZliL8kZE5QKUGpHvtyb4J1ZfVyqOFYzrmaIIc7eVnN0GHI1xlTtEzpvnyA0KRzruGRctxe0wcz77M1r8mI0IePF43lOflxffb-8qe--fr69_HRXW97TtVbUUUlbbpxVStlBMBg4V2VkLljHOwMSTNfC2ANtB8ekVDiUwV1PxcgH2Z6Td6fefYq_D5hXPftsMQSzYDxkXdol7xmXrKDshNoUc0446n3ys0lHTUFvEvWkN4l6k6hB6CKxhN4-9h-GGd3fyJO1Anw4AcUPPnhMOluPiy2SEtpVu-j_3__xn7gNfvHWhF94xDzFQ1qKP011Zhr0t21v2xZpByC68qs_272WrQ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Bahado-Singh, Ray O., MD, MBA</creator><creator>Syngelaki, Argyro</creator><creator>Akolekar, Ranjit, MD</creator><creator>Mandal, Rupsari, PhD</creator><creator>Bjondahl, Trent C., PhD</creator><creator>Han, Beomsoo, PhD</creator><creator>Dong, Edison, BSc</creator><creator>Bauer, Samuel, MD</creator><creator>Alpay-Savasan, Zeynep, MD</creator><creator>Graham, Stewart, PhD</creator><creator>Turkoglu, Onur, MD</creator><creator>Wishart, David S., PhD</creator><creator>Nicolaides, Kypros H., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20151001</creationdate><title>Validation of metabolomic models for prediction of early-onset preeclampsia</title><author>Bahado-Singh, Ray O., MD, MBA ; Syngelaki, Argyro ; Akolekar, Ranjit, MD ; Mandal, Rupsari, PhD ; Bjondahl, Trent C., PhD ; Han, Beomsoo, PhD ; Dong, Edison, BSc ; Bauer, Samuel, MD ; Alpay-Savasan, Zeynep, MD ; Graham, Stewart, PhD ; Turkoglu, Onur, MD ; Wishart, David S., PhD ; Nicolaides, Kypros H., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-91d17134adc999cb620b449868462545a070a530f8013bd2779eb229d816f4b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Area Under Curve</topic><topic>Biomarkers - metabolism</topic><topic>Case-Control Studies</topic><topic>early-onset preeclampsia</topic><topic>Female</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolomics</topic><topic>Obstetrics and Gynecology</topic><topic>Pre-Eclampsia - diagnosis</topic><topic>Pre-Eclampsia - diagnostic imaging</topic><topic>Pre-Eclampsia - metabolism</topic><topic>Pregnancy</topic><topic>Pregnancy Trimester, First - metabolism</topic><topic>Pulsatile Flow</topic><topic>Ultrasonography, Doppler</topic><topic>Uterine Artery - diagnostic imaging</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bahado-Singh, Ray O., MD, MBA</creatorcontrib><creatorcontrib>Syngelaki, Argyro</creatorcontrib><creatorcontrib>Akolekar, Ranjit, MD</creatorcontrib><creatorcontrib>Mandal, Rupsari, PhD</creatorcontrib><creatorcontrib>Bjondahl, Trent C., PhD</creatorcontrib><creatorcontrib>Han, Beomsoo, PhD</creatorcontrib><creatorcontrib>Dong, Edison, BSc</creatorcontrib><creatorcontrib>Bauer, Samuel, MD</creatorcontrib><creatorcontrib>Alpay-Savasan, Zeynep, MD</creatorcontrib><creatorcontrib>Graham, Stewart, PhD</creatorcontrib><creatorcontrib>Turkoglu, Onur, MD</creatorcontrib><creatorcontrib>Wishart, David S., PhD</creatorcontrib><creatorcontrib>Nicolaides, Kypros H., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of obstetrics and gynecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bahado-Singh, Ray O., MD, MBA</au><au>Syngelaki, Argyro</au><au>Akolekar, Ranjit, MD</au><au>Mandal, Rupsari, PhD</au><au>Bjondahl, Trent C., PhD</au><au>Han, Beomsoo, PhD</au><au>Dong, Edison, BSc</au><au>Bauer, Samuel, MD</au><au>Alpay-Savasan, Zeynep, MD</au><au>Graham, Stewart, PhD</au><au>Turkoglu, Onur, MD</au><au>Wishart, David S., PhD</au><au>Nicolaides, Kypros H., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of metabolomic models for prediction of early-onset preeclampsia</atitle><jtitle>American journal of obstetrics and gynecology</jtitle><addtitle>Am J Obstet Gynecol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>213</volume><issue>4</issue><spage>530.e1</spage><epage>530.e10</epage><pages>530.e1-530.e10</pages><issn>0002-9378</issn><eissn>1097-6868</eissn><abstract>Objective We sought to perform validation studies of previously published and newly derived first-trimester metabolomic algorithms for prediction of early preeclampsia (PE). Study Design Nuclear magnetic resonance–based metabolomic analysis was performed on first-trimester serum in 50 women who subsequently developed early PE and in 108 first-trimester controls. Random stratification and allocation was used to divide cases into a discovery group (30 early PE and 65 controls) for generation of the biomarker model(s) and a validation group (20 early PE and 43 controls) to ensure an unbiased assessment of the predictive algorithms. Cross-validation testing on the different algorithms was performed to confirm their robustness before use. Metabolites, demographic features, clinical characteristics, and uterine Doppler pulsatility index data were evaluated. Area under the receiver operator characteristic curve (AUC), 95% confidence interval (CI), sensitivity, and specificity of the biomarker models were derived. Results Validation testing found that the metabolite-only model had an AUC of 0.835 (95% CI, 0.769–0.941) with a 75% sensitivity and 74.4% specificity and for the metabolites plus uterine Doppler pulsatility index model it was 0.916 (95% CI, 0.836–0.996), 90%, and 88.4%, respectively. Predictive metabolites included arginine and 2-hydroxybutyrate, which are known to be involved in vascular dilation, and insulin resistance and impaired glucose regulation, respectively. Conclusion We found confirmatory evidence that first-trimester metabolomic biomarkers can predict future development of early PE.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26116099</pmid><doi>10.1016/j.ajog.2015.06.044</doi></addata></record>
fulltext fulltext
identifier ISSN: 0002-9378
ispartof American journal of obstetrics and gynecology, 2015-10, Vol.213 (4), p.530.e1-530.e10
issn 0002-9378
1097-6868
language eng
recordid cdi_proquest_miscellaneous_1717482472
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Algorithms
Area Under Curve
Biomarkers - metabolism
Case-Control Studies
early-onset preeclampsia
Female
Humans
Magnetic Resonance Spectroscopy
Metabolomics
Obstetrics and Gynecology
Pre-Eclampsia - diagnosis
Pre-Eclampsia - diagnostic imaging
Pre-Eclampsia - metabolism
Pregnancy
Pregnancy Trimester, First - metabolism
Pulsatile Flow
Ultrasonography, Doppler
Uterine Artery - diagnostic imaging
Young Adult
title Validation of metabolomic models for prediction of early-onset preeclampsia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20metabolomic%20models%20for%20prediction%20of%20early-onset%20preeclampsia&rft.jtitle=American%20journal%20of%20obstetrics%20and%20gynecology&rft.au=Bahado-Singh,%20Ray%20O.,%20MD,%20MBA&rft.date=2015-10-01&rft.volume=213&rft.issue=4&rft.spage=530.e1&rft.epage=530.e10&rft.pages=530.e1-530.e10&rft.issn=0002-9378&rft.eissn=1097-6868&rft_id=info:doi/10.1016/j.ajog.2015.06.044&rft_dat=%3Cproquest_cross%3E1717482472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717482472&rft_id=info:pmid/26116099&rft_els_id=S0002937815006572&rfr_iscdi=true