Regionalising the available water capacity from readily available data

In this study the available water capacity (AWC) is predicted for a 10 km 2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoderma 2006-06, Vol.132 (3), p.391-405
Hauptverfasser: Selle, B., Morgen, R., Huwe, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 405
container_issue 3
container_start_page 391
container_title Geoderma
container_volume 132
creator Selle, B.
Morgen, R.
Huwe, B.
description In this study the available water capacity (AWC) is predicted for a 10 km 2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.
doi_str_mv 10.1016/j.geoderma.2005.05.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17171213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706105001928</els_id><sourcerecordid>17171213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_guSit8TdjfuRm1KsCgVB9LxMNpO6JR91N63037uhFb3JDAwDz8w78xJyyWjGKJM3q2yJfYW-hYxTKrIxmTgiE6YVTyUXxTGZ0Eimikp2Ss5CWMVWUU4nZP6KS9d30LjgumUyfGACW3ANlA0mXzCgTyyswbphl9S-bxOPULlm94eqYIBzclJDE_DiUKfkff7wNntKFy-Pz7P7RQp5IYcUuIx3CK01pZoXAKyqZZ3zEiRDVWpprRDC6lxoykWprCprhqJSuaKUIuZTcr3fu_b95wbDYFoXLDYNdNhvgmEqBmd5BOUetL4PwWNt1t614HeGUTPaZlbmxzYz2mbGZCIOXh0UIFhoag-ddeF3WimVF7c6cnd7DuO7W4feBOuws1g5j3YwVe_-k_oGFmaGJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17171213</pqid></control><display><type>article</type><title>Regionalising the available water capacity from readily available data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Selle, B. ; Morgen, R. ; Huwe, B.</creator><creatorcontrib>Selle, B. ; Morgen, R. ; Huwe, B.</creatorcontrib><description>In this study the available water capacity (AWC) is predicted for a 10 km 2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2005.05.015</identifier><identifier>CODEN: GEDMAB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agronomy. Soil science and plant productions ; Available water capacity ; Biological and medical sciences ; Classification and regression trees ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feed-forward multilayer perceptron ; Fundamental and applied biological sciences. Psychology ; Kriging ; Neural networks ; Regionalisation ; Soil hydrology ; Soils ; Surficial geology</subject><ispartof>Geoderma, 2006-06, Vol.132 (3), p.391-405</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</citedby><cites>FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geoderma.2005.05.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17773948$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Selle, B.</creatorcontrib><creatorcontrib>Morgen, R.</creatorcontrib><creatorcontrib>Huwe, B.</creatorcontrib><title>Regionalising the available water capacity from readily available data</title><title>Geoderma</title><description>In this study the available water capacity (AWC) is predicted for a 10 km 2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Available water capacity</subject><subject>Biological and medical sciences</subject><subject>Classification and regression trees</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feed-forward multilayer perceptron</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kriging</subject><subject>Neural networks</subject><subject>Regionalisation</subject><subject>Soil hydrology</subject><subject>Soils</subject><subject>Surficial geology</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFb_guSit8TdjfuRm1KsCgVB9LxMNpO6JR91N63037uhFb3JDAwDz8w78xJyyWjGKJM3q2yJfYW-hYxTKrIxmTgiE6YVTyUXxTGZ0Eimikp2Ss5CWMVWUU4nZP6KS9d30LjgumUyfGACW3ANlA0mXzCgTyyswbphl9S-bxOPULlm94eqYIBzclJDE_DiUKfkff7wNntKFy-Pz7P7RQp5IYcUuIx3CK01pZoXAKyqZZ3zEiRDVWpprRDC6lxoykWprCprhqJSuaKUIuZTcr3fu_b95wbDYFoXLDYNdNhvgmEqBmd5BOUetL4PwWNt1t614HeGUTPaZlbmxzYz2mbGZCIOXh0UIFhoag-ddeF3WimVF7c6cnd7DuO7W4feBOuws1g5j3YwVe_-k_oGFmaGJA</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Selle, B.</creator><creator>Morgen, R.</creator><creator>Huwe, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20060601</creationdate><title>Regionalising the available water capacity from readily available data</title><author>Selle, B. ; Morgen, R. ; Huwe, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Available water capacity</topic><topic>Biological and medical sciences</topic><topic>Classification and regression trees</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feed-forward multilayer perceptron</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kriging</topic><topic>Neural networks</topic><topic>Regionalisation</topic><topic>Soil hydrology</topic><topic>Soils</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selle, B.</creatorcontrib><creatorcontrib>Morgen, R.</creatorcontrib><creatorcontrib>Huwe, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selle, B.</au><au>Morgen, R.</au><au>Huwe, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regionalising the available water capacity from readily available data</atitle><jtitle>Geoderma</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>132</volume><issue>3</issue><spage>391</spage><epage>405</epage><pages>391-405</pages><issn>0016-7061</issn><eissn>1872-6259</eissn><coden>GEDMAB</coden><abstract>In this study the available water capacity (AWC) is predicted for a 10 km 2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2005.05.015</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7061
ispartof Geoderma, 2006-06, Vol.132 (3), p.391-405
issn 0016-7061
1872-6259
language eng
recordid cdi_proquest_miscellaneous_17171213
source Elsevier ScienceDirect Journals Complete
subjects Agronomy. Soil science and plant productions
Available water capacity
Biological and medical sciences
Classification and regression trees
Earth sciences
Earth, ocean, space
Exact sciences and technology
Feed-forward multilayer perceptron
Fundamental and applied biological sciences. Psychology
Kriging
Neural networks
Regionalisation
Soil hydrology
Soils
Surficial geology
title Regionalising the available water capacity from readily available data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regionalising%20the%20available%20water%20capacity%20from%20readily%20available%20data&rft.jtitle=Geoderma&rft.au=Selle,%20B.&rft.date=2006-06-01&rft.volume=132&rft.issue=3&rft.spage=391&rft.epage=405&rft.pages=391-405&rft.issn=0016-7061&rft.eissn=1872-6259&rft.coden=GEDMAB&rft_id=info:doi/10.1016/j.geoderma.2005.05.015&rft_dat=%3Cproquest_cross%3E17171213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17171213&rft_id=info:pmid/&rft_els_id=S0016706105001928&rfr_iscdi=true