Regionalising the available water capacity from readily available data
In this study the available water capacity (AWC) is predicted for a 10 km 2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose a...
Gespeichert in:
Veröffentlicht in: | Geoderma 2006-06, Vol.132 (3), p.391-405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 3 |
container_start_page | 391 |
container_title | Geoderma |
container_volume | 132 |
creator | Selle, B. Morgen, R. Huwe, B. |
description | In this study the available water capacity (AWC) is predicted for a 10 km
2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail. |
doi_str_mv | 10.1016/j.geoderma.2005.05.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17171213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706105001928</els_id><sourcerecordid>17171213</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_guSit8TdjfuRm1KsCgVB9LxMNpO6JR91N63037uhFb3JDAwDz8w78xJyyWjGKJM3q2yJfYW-hYxTKrIxmTgiE6YVTyUXxTGZ0Eimikp2Ss5CWMVWUU4nZP6KS9d30LjgumUyfGACW3ANlA0mXzCgTyyswbphl9S-bxOPULlm94eqYIBzclJDE_DiUKfkff7wNntKFy-Pz7P7RQp5IYcUuIx3CK01pZoXAKyqZZ3zEiRDVWpprRDC6lxoykWprCprhqJSuaKUIuZTcr3fu_b95wbDYFoXLDYNdNhvgmEqBmd5BOUetL4PwWNt1t614HeGUTPaZlbmxzYz2mbGZCIOXh0UIFhoag-ddeF3WimVF7c6cnd7DuO7W4feBOuws1g5j3YwVe_-k_oGFmaGJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17171213</pqid></control><display><type>article</type><title>Regionalising the available water capacity from readily available data</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Selle, B. ; Morgen, R. ; Huwe, B.</creator><creatorcontrib>Selle, B. ; Morgen, R. ; Huwe, B.</creatorcontrib><description>In this study the available water capacity (AWC) is predicted for a 10 km
2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2005.05.015</identifier><identifier>CODEN: GEDMAB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agronomy. Soil science and plant productions ; Available water capacity ; Biological and medical sciences ; Classification and regression trees ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Feed-forward multilayer perceptron ; Fundamental and applied biological sciences. Psychology ; Kriging ; Neural networks ; Regionalisation ; Soil hydrology ; Soils ; Surficial geology</subject><ispartof>Geoderma, 2006-06, Vol.132 (3), p.391-405</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</citedby><cites>FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geoderma.2005.05.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17773948$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Selle, B.</creatorcontrib><creatorcontrib>Morgen, R.</creatorcontrib><creatorcontrib>Huwe, B.</creatorcontrib><title>Regionalising the available water capacity from readily available data</title><title>Geoderma</title><description>In this study the available water capacity (AWC) is predicted for a 10 km
2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Available water capacity</subject><subject>Biological and medical sciences</subject><subject>Classification and regression trees</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Feed-forward multilayer perceptron</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Kriging</subject><subject>Neural networks</subject><subject>Regionalisation</subject><subject>Soil hydrology</subject><subject>Soils</subject><subject>Surficial geology</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFb_guSit8TdjfuRm1KsCgVB9LxMNpO6JR91N63037uhFb3JDAwDz8w78xJyyWjGKJM3q2yJfYW-hYxTKrIxmTgiE6YVTyUXxTGZ0Eimikp2Ss5CWMVWUU4nZP6KS9d30LjgumUyfGACW3ANlA0mXzCgTyyswbphl9S-bxOPULlm94eqYIBzclJDE_DiUKfkff7wNntKFy-Pz7P7RQp5IYcUuIx3CK01pZoXAKyqZZ3zEiRDVWpprRDC6lxoykWprCprhqJSuaKUIuZTcr3fu_b95wbDYFoXLDYNdNhvgmEqBmd5BOUetL4PwWNt1t614HeGUTPaZlbmxzYz2mbGZCIOXh0UIFhoag-ddeF3WimVF7c6cnd7DuO7W4feBOuws1g5j3YwVe_-k_oGFmaGJA</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Selle, B.</creator><creator>Morgen, R.</creator><creator>Huwe, B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20060601</creationdate><title>Regionalising the available water capacity from readily available data</title><author>Selle, B. ; Morgen, R. ; Huwe, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-a26016588800829aa1df6f32ba61e7b86cc555c8358025b7c7bf1e5d737000ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Available water capacity</topic><topic>Biological and medical sciences</topic><topic>Classification and regression trees</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Feed-forward multilayer perceptron</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Kriging</topic><topic>Neural networks</topic><topic>Regionalisation</topic><topic>Soil hydrology</topic><topic>Soils</topic><topic>Surficial geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selle, B.</creatorcontrib><creatorcontrib>Morgen, R.</creatorcontrib><creatorcontrib>Huwe, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selle, B.</au><au>Morgen, R.</au><au>Huwe, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regionalising the available water capacity from readily available data</atitle><jtitle>Geoderma</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>132</volume><issue>3</issue><spage>391</spage><epage>405</epage><pages>391-405</pages><issn>0016-7061</issn><eissn>1872-6259</eissn><coden>GEDMAB</coden><abstract>In this study the available water capacity (AWC) is predicted for a 10 km
2 catchment in Northern Bavaria, Germany using only readily available data. Therefore classification and regression trees (CART), a feed-forward multilayer perceptron (MLP) and kriging are applied. In this context we propose an alternative procedure for fitting the covariance function. The different regionalisation model performances are compared and the influence of the sample size on the model performance is investigated systematically. Unfortunately the three regionalisation approaches provide AWC maps containing only limited information indicating that the information content of the data is not sufficient for regionalisation. We determine that the model predictions are unlikely to be significantly improved by the addition of more data points. Other possibilities regarding the improvement of the AWC predictions are discussed in detail.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2005.05.015</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7061 |
ispartof | Geoderma, 2006-06, Vol.132 (3), p.391-405 |
issn | 0016-7061 1872-6259 |
language | eng |
recordid | cdi_proquest_miscellaneous_17171213 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Agronomy. Soil science and plant productions Available water capacity Biological and medical sciences Classification and regression trees Earth sciences Earth, ocean, space Exact sciences and technology Feed-forward multilayer perceptron Fundamental and applied biological sciences. Psychology Kriging Neural networks Regionalisation Soil hydrology Soils Surficial geology |
title | Regionalising the available water capacity from readily available data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A43%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regionalising%20the%20available%20water%20capacity%20from%20readily%20available%20data&rft.jtitle=Geoderma&rft.au=Selle,%20B.&rft.date=2006-06-01&rft.volume=132&rft.issue=3&rft.spage=391&rft.epage=405&rft.pages=391-405&rft.issn=0016-7061&rft.eissn=1872-6259&rft.coden=GEDMAB&rft_id=info:doi/10.1016/j.geoderma.2005.05.015&rft_dat=%3Cproquest_cross%3E17171213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17171213&rft_id=info:pmid/&rft_els_id=S0016706105001928&rfr_iscdi=true |