A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing
Superelastic wires and diamond-shaped stent surrogates were manufactured from Nitinol rods and tubing, respectively, from five different mill product suppliers – Standard VAR, Standard VIM, Standard VIM+VAR, Process-Optimized VIM+VAR, and High-Purity VAR. High-cycle fatigue tests up to 107 cycles we...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2015-11, Vol.51, p.119-131 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | |
container_start_page | 119 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 51 |
creator | Robertson, Scott W. Launey, Maximilien Shelley, Oren Ong, Ich Vien, Lot Senthilnathan, Karthike Saffari, Payman Schlegel, Scott Pelton, Alan R. |
description | Superelastic wires and diamond-shaped stent surrogates were manufactured from Nitinol rods and tubing, respectively, from five different mill product suppliers – Standard VAR, Standard VIM, Standard VIM+VAR, Process-Optimized VIM+VAR, and High-Purity VAR. High-cycle fatigue tests up to 107 cycles were conducted under tension–tension conditions for wires and bending conditions for diamonds. These materials were compared under both testing methods at 37°C with 6% prestrain and 3% mean strain (unloading plateau) with a range of alternating strains. The High-Purity VAR material outperformed all alloys tested with a measured 107-fatigue alternating strain limit of 0.32% for wire and 1.75% for diamonds. Process-Optimized VIM+VAR material was only slightly inferior to the High Purity VAR with a diamond alternating bending strain limit of 1.5%. These two “second generation” Nitinol alloys demonstrated approximately a 2× increase in 107-cycle fatigue strain limit compared to all of the Standard-grade Nitinol alloys (VAR, VIM, and VIM+VAR) that demonstrated virtually indistinguishable fatigue performance. This statistically-significant increase in fatigue resistance in the contemporary alloys is ascribed to smaller inclusions in the Process-Optimized VIM+VAR material, and both smaller and fewer inclusions in the High-Purity VAR Nitinol. |
doi_str_mv | 10.1016/j.jmbbm.2015.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1716937598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616115002441</els_id><sourcerecordid>1716937598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-29309f4b210d6f7c4e053784b9eefd7247f3c6bc4868ecf9feb78fbcc76cf453</originalsourceid><addsrcrecordid>eNp9kD1v2zAQhomgQeIm-QUFCo5dpBz1QVJDByNo0gJBsngnROro0JBEl6RadMh_L22nHTORwD3ve7iHkE8MSgaM3-7K3aT1VFbA2hJECVCfkRWTQhbAJHzIf9GygjPOLsnHGHcAHEDKC3JZ8aphsoMVeV3TmPrkYnKmH2m_3wffmxeaPF3mAUMezgNNL0iDH5F6S91sxiU6P0fq5-PE5vx2yQRGd-DNkYvLHgOO_aGZPrnkZj_S3y4gPTYu2s3ba3Ju-zHizdt7RTb33zZ334vH54cfd-vHwtRtl4qqq6Gzja4YDNwK0yC0tZCN7hDtIKpG2NpwbRrJJRrbWdRCWm2M4MY2bX1Fvpxq83E_F4xJTS4aHMd-Rr9ExQTjXS3aTma0PqEm-BgDWrUPburDH8VAHbSrnTpqVwftCoTK2nPq89uCRU84_M_885yBrycA85W_HAYVjcNsashCTFKDd-8u-Avyy5eW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716937598</pqid></control><display><type>article</type><title>A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Robertson, Scott W. ; Launey, Maximilien ; Shelley, Oren ; Ong, Ich ; Vien, Lot ; Senthilnathan, Karthike ; Saffari, Payman ; Schlegel, Scott ; Pelton, Alan R.</creator><creatorcontrib>Robertson, Scott W. ; Launey, Maximilien ; Shelley, Oren ; Ong, Ich ; Vien, Lot ; Senthilnathan, Karthike ; Saffari, Payman ; Schlegel, Scott ; Pelton, Alan R.</creatorcontrib><description>Superelastic wires and diamond-shaped stent surrogates were manufactured from Nitinol rods and tubing, respectively, from five different mill product suppliers – Standard VAR, Standard VIM, Standard VIM+VAR, Process-Optimized VIM+VAR, and High-Purity VAR. High-cycle fatigue tests up to 107 cycles were conducted under tension–tension conditions for wires and bending conditions for diamonds. These materials were compared under both testing methods at 37°C with 6% prestrain and 3% mean strain (unloading plateau) with a range of alternating strains. The High-Purity VAR material outperformed all alloys tested with a measured 107-fatigue alternating strain limit of 0.32% for wire and 1.75% for diamonds. Process-Optimized VIM+VAR material was only slightly inferior to the High Purity VAR with a diamond alternating bending strain limit of 1.5%. These two “second generation” Nitinol alloys demonstrated approximately a 2× increase in 107-cycle fatigue strain limit compared to all of the Standard-grade Nitinol alloys (VAR, VIM, and VIM+VAR) that demonstrated virtually indistinguishable fatigue performance. This statistically-significant increase in fatigue resistance in the contemporary alloys is ascribed to smaller inclusions in the Process-Optimized VIM+VAR material, and both smaller and fewer inclusions in the High-Purity VAR Nitinol.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2015.07.003</identifier><identifier>PMID: 26241890</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alloys ; Elasticity ; Fatigue ; Inclusions ; Materials Testing ; Microstructure ; Nitinol ; NMIs ; Stents ; Stress, Mechanical</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2015-11, Vol.51, p.119-131</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-29309f4b210d6f7c4e053784b9eefd7247f3c6bc4868ecf9feb78fbcc76cf453</citedby><cites>FETCH-LOGICAL-c359t-29309f4b210d6f7c4e053784b9eefd7247f3c6bc4868ecf9feb78fbcc76cf453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616115002441$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26241890$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robertson, Scott W.</creatorcontrib><creatorcontrib>Launey, Maximilien</creatorcontrib><creatorcontrib>Shelley, Oren</creatorcontrib><creatorcontrib>Ong, Ich</creatorcontrib><creatorcontrib>Vien, Lot</creatorcontrib><creatorcontrib>Senthilnathan, Karthike</creatorcontrib><creatorcontrib>Saffari, Payman</creatorcontrib><creatorcontrib>Schlegel, Scott</creatorcontrib><creatorcontrib>Pelton, Alan R.</creatorcontrib><title>A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Superelastic wires and diamond-shaped stent surrogates were manufactured from Nitinol rods and tubing, respectively, from five different mill product suppliers – Standard VAR, Standard VIM, Standard VIM+VAR, Process-Optimized VIM+VAR, and High-Purity VAR. High-cycle fatigue tests up to 107 cycles were conducted under tension–tension conditions for wires and bending conditions for diamonds. These materials were compared under both testing methods at 37°C with 6% prestrain and 3% mean strain (unloading plateau) with a range of alternating strains. The High-Purity VAR material outperformed all alloys tested with a measured 107-fatigue alternating strain limit of 0.32% for wire and 1.75% for diamonds. Process-Optimized VIM+VAR material was only slightly inferior to the High Purity VAR with a diamond alternating bending strain limit of 1.5%. These two “second generation” Nitinol alloys demonstrated approximately a 2× increase in 107-cycle fatigue strain limit compared to all of the Standard-grade Nitinol alloys (VAR, VIM, and VIM+VAR) that demonstrated virtually indistinguishable fatigue performance. This statistically-significant increase in fatigue resistance in the contemporary alloys is ascribed to smaller inclusions in the Process-Optimized VIM+VAR material, and both smaller and fewer inclusions in the High-Purity VAR Nitinol.</description><subject>Alloys</subject><subject>Elasticity</subject><subject>Fatigue</subject><subject>Inclusions</subject><subject>Materials Testing</subject><subject>Microstructure</subject><subject>Nitinol</subject><subject>NMIs</subject><subject>Stents</subject><subject>Stress, Mechanical</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1v2zAQhomgQeIm-QUFCo5dpBz1QVJDByNo0gJBsngnROro0JBEl6RadMh_L22nHTORwD3ve7iHkE8MSgaM3-7K3aT1VFbA2hJECVCfkRWTQhbAJHzIf9GygjPOLsnHGHcAHEDKC3JZ8aphsoMVeV3TmPrkYnKmH2m_3wffmxeaPF3mAUMezgNNL0iDH5F6S91sxiU6P0fq5-PE5vx2yQRGd-DNkYvLHgOO_aGZPrnkZj_S3y4gPTYu2s3ba3Ju-zHizdt7RTb33zZ334vH54cfd-vHwtRtl4qqq6Gzja4YDNwK0yC0tZCN7hDtIKpG2NpwbRrJJRrbWdRCWm2M4MY2bX1Fvpxq83E_F4xJTS4aHMd-Rr9ExQTjXS3aTma0PqEm-BgDWrUPburDH8VAHbSrnTpqVwftCoTK2nPq89uCRU84_M_885yBrycA85W_HAYVjcNsashCTFKDd-8u-Avyy5eW</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Robertson, Scott W.</creator><creator>Launey, Maximilien</creator><creator>Shelley, Oren</creator><creator>Ong, Ich</creator><creator>Vien, Lot</creator><creator>Senthilnathan, Karthike</creator><creator>Saffari, Payman</creator><creator>Schlegel, Scott</creator><creator>Pelton, Alan R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201511</creationdate><title>A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing</title><author>Robertson, Scott W. ; Launey, Maximilien ; Shelley, Oren ; Ong, Ich ; Vien, Lot ; Senthilnathan, Karthike ; Saffari, Payman ; Schlegel, Scott ; Pelton, Alan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-29309f4b210d6f7c4e053784b9eefd7247f3c6bc4868ecf9feb78fbcc76cf453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Elasticity</topic><topic>Fatigue</topic><topic>Inclusions</topic><topic>Materials Testing</topic><topic>Microstructure</topic><topic>Nitinol</topic><topic>NMIs</topic><topic>Stents</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, Scott W.</creatorcontrib><creatorcontrib>Launey, Maximilien</creatorcontrib><creatorcontrib>Shelley, Oren</creatorcontrib><creatorcontrib>Ong, Ich</creatorcontrib><creatorcontrib>Vien, Lot</creatorcontrib><creatorcontrib>Senthilnathan, Karthike</creatorcontrib><creatorcontrib>Saffari, Payman</creatorcontrib><creatorcontrib>Schlegel, Scott</creatorcontrib><creatorcontrib>Pelton, Alan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, Scott W.</au><au>Launey, Maximilien</au><au>Shelley, Oren</au><au>Ong, Ich</au><au>Vien, Lot</au><au>Senthilnathan, Karthike</au><au>Saffari, Payman</au><au>Schlegel, Scott</au><au>Pelton, Alan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2015-11</date><risdate>2015</risdate><volume>51</volume><spage>119</spage><epage>131</epage><pages>119-131</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Superelastic wires and diamond-shaped stent surrogates were manufactured from Nitinol rods and tubing, respectively, from five different mill product suppliers – Standard VAR, Standard VIM, Standard VIM+VAR, Process-Optimized VIM+VAR, and High-Purity VAR. High-cycle fatigue tests up to 107 cycles were conducted under tension–tension conditions for wires and bending conditions for diamonds. These materials were compared under both testing methods at 37°C with 6% prestrain and 3% mean strain (unloading plateau) with a range of alternating strains. The High-Purity VAR material outperformed all alloys tested with a measured 107-fatigue alternating strain limit of 0.32% for wire and 1.75% for diamonds. Process-Optimized VIM+VAR material was only slightly inferior to the High Purity VAR with a diamond alternating bending strain limit of 1.5%. These two “second generation” Nitinol alloys demonstrated approximately a 2× increase in 107-cycle fatigue strain limit compared to all of the Standard-grade Nitinol alloys (VAR, VIM, and VIM+VAR) that demonstrated virtually indistinguishable fatigue performance. This statistically-significant increase in fatigue resistance in the contemporary alloys is ascribed to smaller inclusions in the Process-Optimized VIM+VAR material, and both smaller and fewer inclusions in the High-Purity VAR Nitinol.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26241890</pmid><doi>10.1016/j.jmbbm.2015.07.003</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2015-11, Vol.51, p.119-131 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1716937598 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Alloys Elasticity Fatigue Inclusions Materials Testing Microstructure Nitinol NMIs Stents Stress, Mechanical |
title | A statistical approach to understand the role of inclusions on the fatigue resistance of superelastic Nitinol wire and tubing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20approach%20to%20understand%20the%20role%20of%20inclusions%20on%20the%20fatigue%20resistance%20of%20superelastic%20Nitinol%20wire%20and%20tubing&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Robertson,%20Scott%20W.&rft.date=2015-11&rft.volume=51&rft.spage=119&rft.epage=131&rft.pages=119-131&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2015.07.003&rft_dat=%3Cproquest_cross%3E1716937598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716937598&rft_id=info:pmid/26241890&rft_els_id=S1751616115002441&rfr_iscdi=true |