Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus

•Auxin promotes different gene expression profiles in E. globulus and E. grandis.•Cambium zone undergoes early divisions during development of adventitious roots.•Cambium cells were selected by laser microdissection during rooting.•Genes putatively controlling adventitious rooting were analyzed in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant science (Limerick) 2015-10, Vol.239, p.155-165
Hauptverfasser: de Almeida, Márcia Rodrigues, de Bastiani, Daniela, Gaeta, Marcos Letaif, de Araújo Mariath, Jorge Ernesto, de Costa, Fernanda, Retallick, Jeffrey, Nolan, Lana, Tai, Helen H., Strömvik, Martina V., Fett-Neto, Arthur Germano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue
container_start_page 155
container_title Plant science (Limerick)
container_volume 239
creator de Almeida, Márcia Rodrigues
de Bastiani, Daniela
Gaeta, Marcos Letaif
de Araújo Mariath, Jorge Ernesto
de Costa, Fernanda
Retallick, Jeffrey
Nolan, Lana
Tai, Helen H.
Strömvik, Martina V.
Fett-Neto, Arthur Germano
description •Auxin promotes different gene expression profiles in E. globulus and E. grandis.•Cambium zone undergoes early divisions during development of adventitious roots.•Cambium cells were selected by laser microdissection during rooting.•Genes putatively controlling adventitious rooting were analyzed in cambium cells.•TPL, IAA12 and ARR1 may act as negative regulators of rooting in Eucalyptus. Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus.
doi_str_mv 10.1016/j.plantsci.2015.07.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1716932456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168945215300285</els_id><sourcerecordid>1716932456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-838e379255c11cbb0bcc8be307677bb80b509e019e27ccf458652c00eafd917b3</originalsourceid><addsrcrecordid>eNqFUU1v3CAURFWjZpP0L0Qce7HzwIvBt1ar9EOK1Et7RoCfE1a2cQFvtb8gf7usNuk1F0Bo5s2bGUJuGdQMWHu3r5fRzDk5X3NgogZZA-fvyIYp2VSci-492RSgqrqt4JfkKqU9AHAh5AdyydumUwpgQ553YVpMNNkfkOZo5uSiX7IPsxmpKccx-USXGA6-x0Rn_Ev9nPzjU07lkQPNT0inMKJbRxOpNSd4GKjpDzhnXwaticYQsp8faURnRudPMg4Lnd6v5eO45DXdkIvBjAk_vtzX5PfX-1-779XDz28_dl8eKte0KleqUdjIrthwjDlrwTqnLDYgWymtVWAFdAisQy6dG7ZCtYI7ADRD3zFpm2vy6Ty3WPqzYsp68snhWMLEsqpmkrVdw7eiLdD2DHUxpBRx0Ev0k4lHzUCfStB7_VqCPpWgQepSQiHevmisdsL-P-019QL4fAZgcXrwGHUZgSWT3peIsu6Df0vjH9FWoHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1716932456</pqid></control><display><type>article</type><title>Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>de Almeida, Márcia Rodrigues ; de Bastiani, Daniela ; Gaeta, Marcos Letaif ; de Araújo Mariath, Jorge Ernesto ; de Costa, Fernanda ; Retallick, Jeffrey ; Nolan, Lana ; Tai, Helen H. ; Strömvik, Martina V. ; Fett-Neto, Arthur Germano</creator><creatorcontrib>de Almeida, Márcia Rodrigues ; de Bastiani, Daniela ; Gaeta, Marcos Letaif ; de Araújo Mariath, Jorge Ernesto ; de Costa, Fernanda ; Retallick, Jeffrey ; Nolan, Lana ; Tai, Helen H. ; Strömvik, Martina V. ; Fett-Neto, Arthur Germano</creatorcontrib><description>•Auxin promotes different gene expression profiles in E. globulus and E. grandis.•Cambium zone undergoes early divisions during development of adventitious roots.•Cambium cells were selected by laser microdissection during rooting.•Genes putatively controlling adventitious rooting were analyzed in cambium cells.•TPL, IAA12 and ARR1 may act as negative regulators of rooting in Eucalyptus. Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus.</description><identifier>ISSN: 0168-9452</identifier><identifier>EISSN: 1873-2259</identifier><identifier>DOI: 10.1016/j.plantsci.2015.07.022</identifier><identifier>PMID: 26398800</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Auxin ; Eucalyptus - anatomy &amp; histology ; Eucalyptus - genetics ; Eucalyptus - growth &amp; development ; Eucalyptus - metabolism ; Gene expression ; Gene Expression Regulation, Plant ; Indoleacetic Acids - metabolism ; Laser Capture Microdissection ; Plant Growth Regulators - metabolism ; Plant Roots - anatomy &amp; histology ; Plant Roots - genetics ; Plant Roots - growth &amp; development ; Plant Roots - metabolism ; Rooting</subject><ispartof>Plant science (Limerick), 2015-10, Vol.239, p.155-165</ispartof><rights>2015 Elsevier Ireland Ltd</rights><rights>Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-838e379255c11cbb0bcc8be307677bb80b509e019e27ccf458652c00eafd917b3</citedby><cites>FETCH-LOGICAL-c368t-838e379255c11cbb0bcc8be307677bb80b509e019e27ccf458652c00eafd917b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168945215300285$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26398800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Almeida, Márcia Rodrigues</creatorcontrib><creatorcontrib>de Bastiani, Daniela</creatorcontrib><creatorcontrib>Gaeta, Marcos Letaif</creatorcontrib><creatorcontrib>de Araújo Mariath, Jorge Ernesto</creatorcontrib><creatorcontrib>de Costa, Fernanda</creatorcontrib><creatorcontrib>Retallick, Jeffrey</creatorcontrib><creatorcontrib>Nolan, Lana</creatorcontrib><creatorcontrib>Tai, Helen H.</creatorcontrib><creatorcontrib>Strömvik, Martina V.</creatorcontrib><creatorcontrib>Fett-Neto, Arthur Germano</creatorcontrib><title>Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus</title><title>Plant science (Limerick)</title><addtitle>Plant Sci</addtitle><description>•Auxin promotes different gene expression profiles in E. globulus and E. grandis.•Cambium zone undergoes early divisions during development of adventitious roots.•Cambium cells were selected by laser microdissection during rooting.•Genes putatively controlling adventitious rooting were analyzed in cambium cells.•TPL, IAA12 and ARR1 may act as negative regulators of rooting in Eucalyptus. Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus.</description><subject>Auxin</subject><subject>Eucalyptus - anatomy &amp; histology</subject><subject>Eucalyptus - genetics</subject><subject>Eucalyptus - growth &amp; development</subject><subject>Eucalyptus - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Laser Capture Microdissection</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Roots - anatomy &amp; histology</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - growth &amp; development</subject><subject>Plant Roots - metabolism</subject><subject>Rooting</subject><issn>0168-9452</issn><issn>1873-2259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v3CAURFWjZpP0L0Qce7HzwIvBt1ar9EOK1Et7RoCfE1a2cQFvtb8gf7usNuk1F0Bo5s2bGUJuGdQMWHu3r5fRzDk5X3NgogZZA-fvyIYp2VSci-492RSgqrqt4JfkKqU9AHAh5AdyydumUwpgQ553YVpMNNkfkOZo5uSiX7IPsxmpKccx-USXGA6-x0Rn_Ev9nPzjU07lkQPNT0inMKJbRxOpNSd4GKjpDzhnXwaticYQsp8faURnRudPMg4Lnd6v5eO45DXdkIvBjAk_vtzX5PfX-1-779XDz28_dl8eKte0KleqUdjIrthwjDlrwTqnLDYgWymtVWAFdAisQy6dG7ZCtYI7ADRD3zFpm2vy6Ty3WPqzYsp68snhWMLEsqpmkrVdw7eiLdD2DHUxpBRx0Ev0k4lHzUCfStB7_VqCPpWgQepSQiHevmisdsL-P-019QL4fAZgcXrwGHUZgSWT3peIsu6Df0vjH9FWoHk</recordid><startdate>201510</startdate><enddate>201510</enddate><creator>de Almeida, Márcia Rodrigues</creator><creator>de Bastiani, Daniela</creator><creator>Gaeta, Marcos Letaif</creator><creator>de Araújo Mariath, Jorge Ernesto</creator><creator>de Costa, Fernanda</creator><creator>Retallick, Jeffrey</creator><creator>Nolan, Lana</creator><creator>Tai, Helen H.</creator><creator>Strömvik, Martina V.</creator><creator>Fett-Neto, Arthur Germano</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201510</creationdate><title>Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus</title><author>de Almeida, Márcia Rodrigues ; de Bastiani, Daniela ; Gaeta, Marcos Letaif ; de Araújo Mariath, Jorge Ernesto ; de Costa, Fernanda ; Retallick, Jeffrey ; Nolan, Lana ; Tai, Helen H. ; Strömvik, Martina V. ; Fett-Neto, Arthur Germano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-838e379255c11cbb0bcc8be307677bb80b509e019e27ccf458652c00eafd917b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Auxin</topic><topic>Eucalyptus - anatomy &amp; histology</topic><topic>Eucalyptus - genetics</topic><topic>Eucalyptus - growth &amp; development</topic><topic>Eucalyptus - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Laser Capture Microdissection</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Roots - anatomy &amp; histology</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - growth &amp; development</topic><topic>Plant Roots - metabolism</topic><topic>Rooting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Almeida, Márcia Rodrigues</creatorcontrib><creatorcontrib>de Bastiani, Daniela</creatorcontrib><creatorcontrib>Gaeta, Marcos Letaif</creatorcontrib><creatorcontrib>de Araújo Mariath, Jorge Ernesto</creatorcontrib><creatorcontrib>de Costa, Fernanda</creatorcontrib><creatorcontrib>Retallick, Jeffrey</creatorcontrib><creatorcontrib>Nolan, Lana</creatorcontrib><creatorcontrib>Tai, Helen H.</creatorcontrib><creatorcontrib>Strömvik, Martina V.</creatorcontrib><creatorcontrib>Fett-Neto, Arthur Germano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant science (Limerick)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Almeida, Márcia Rodrigues</au><au>de Bastiani, Daniela</au><au>Gaeta, Marcos Letaif</au><au>de Araújo Mariath, Jorge Ernesto</au><au>de Costa, Fernanda</au><au>Retallick, Jeffrey</au><au>Nolan, Lana</au><au>Tai, Helen H.</au><au>Strömvik, Martina V.</au><au>Fett-Neto, Arthur Germano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus</atitle><jtitle>Plant science (Limerick)</jtitle><addtitle>Plant Sci</addtitle><date>2015-10</date><risdate>2015</risdate><volume>239</volume><spage>155</spage><epage>165</epage><pages>155-165</pages><issn>0168-9452</issn><eissn>1873-2259</eissn><abstract>•Auxin promotes different gene expression profiles in E. globulus and E. grandis.•Cambium zone undergoes early divisions during development of adventitious roots.•Cambium cells were selected by laser microdissection during rooting.•Genes putatively controlling adventitious rooting were analyzed in cambium cells.•TPL, IAA12 and ARR1 may act as negative regulators of rooting in Eucalyptus. Adventitious rooting (AR) is essential in clonal propagation. Eucalyptus globulus is relevant for the cellulose industry due to its low lignin content. However, several useful clones are recalcitrant to AR, often requiring exogenous auxin, adding cost to clonal garden operations. In contrast, E. grandis is an easy-to-root species widely used in clonal forestry. Aiming at contributing to the elucidation of recalcitrance causes in E. globulus, we conducted a comparative analysis with these two species differing in rooting competence, combining gene expression and anatomical techniques. Recalcitrance in E. globulus is reversed by exposure to exogenous indole-3-acetic acid (IAA), which promotes important gene expression modifications in both species. The endogenous content of IAA was significantly higher in E. grandis than in E. globulus. The cambium zone was identified as an active area during AR, concentrating the first cell divisions. Immunolocalization assay showed auxin accumulation in cambium cells, further indicating the importance of this region for rooting. We then performed a cambium zone-specific gene expression analysis during AR using laser microdissection. The results indicated that the auxin-related genes TOPLESS and IAA12/BODENLOS and the cytokinin-related gene ARR1may act as negative regulators of AR, possibly contributing to the hard-to-root phenotype of E. globulus.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>26398800</pmid><doi>10.1016/j.plantsci.2015.07.022</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9452
ispartof Plant science (Limerick), 2015-10, Vol.239, p.155-165
issn 0168-9452
1873-2259
language eng
recordid cdi_proquest_miscellaneous_1716932456
source MEDLINE; Elsevier ScienceDirect Journals
subjects Auxin
Eucalyptus - anatomy & histology
Eucalyptus - genetics
Eucalyptus - growth & development
Eucalyptus - metabolism
Gene expression
Gene Expression Regulation, Plant
Indoleacetic Acids - metabolism
Laser Capture Microdissection
Plant Growth Regulators - metabolism
Plant Roots - anatomy & histology
Plant Roots - genetics
Plant Roots - growth & development
Plant Roots - metabolism
Rooting
title Comparative transcriptional analysis provides new insights into the molecular basis of adventitious rooting recalcitrance in Eucalyptus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20transcriptional%20analysis%20provides%20new%20insights%20into%20the%20molecular%20basis%20of%20adventitious%20rooting%20recalcitrance%20in%20Eucalyptus&rft.jtitle=Plant%20science%20(Limerick)&rft.au=de%20Almeida,%20M%C3%A1rcia%20Rodrigues&rft.date=2015-10&rft.volume=239&rft.spage=155&rft.epage=165&rft.pages=155-165&rft.issn=0168-9452&rft.eissn=1873-2259&rft_id=info:doi/10.1016/j.plantsci.2015.07.022&rft_dat=%3Cproquest_cross%3E1716932456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1716932456&rft_id=info:pmid/26398800&rft_els_id=S0168945215300285&rfr_iscdi=true