Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches
We analyzed fisheries data collected in 2000 and 2001 from the Greek swordfish fishing fleets operating in the eastern Mediterranean, by means of machine-learning approaches, in order to define differences in exploitation patterns and fishing strategies. Based on their total annual catch, fishing ve...
Gespeichert in:
Veröffentlicht in: | Fisheries research 2006-05, Vol.78 (2), p.196-202 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 202 |
---|---|
container_issue | 2 |
container_start_page | 196 |
container_title | Fisheries research |
container_volume | 78 |
creator | Tserpes, George Moutopoulos, Dimitrios K. Peristeraki, Panagiota Katselis, George Koutsikopoulos, Constantin |
description | We analyzed fisheries data collected in 2000 and 2001 from the Greek swordfish fishing fleets operating in the eastern Mediterranean, by means of machine-learning approaches, in order to define differences in exploitation patterns and fishing strategies. Based on their total annual catch, fishing vessels have been classified in three groups: low, medium and high producers. Decision-tree analysis revealed that group membership could be successfully predicted from the total number of working days per year, the vessel length, the type of gear used, the hook size and the number of hooks per set. Using the data of 2001 as a test data set and assuming that only the average catch of the most productive group was known, total production estimates for that year showed very little difference (7.92%) from the true values. These findings indicate that simple sampling schemes focusing on the high producers may be adequate for the examined fisheries. They also provide evidence that such methodological approaches could be useful for the cross-checking of fisheries estimates obtained through various sampling schemes. |
doi_str_mv | 10.1016/j.fishres.2005.11.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17169021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165783606000373</els_id><sourcerecordid>17169021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-f8dd71e69d469fbe8e89ddc722261b5845591021bf89c325bd54b2680a01a46d3</originalsourceid><addsrcrecordid>eNqFkEtv1DAQxy1UJLaFj4DkC9wSPM76kVOFqhaQijgAZ8uxJ6xXeWw92aL99nW0K3Hk4rGs_2P8Y-w9iBoE6E_7uk-0y0i1FELVALWQ8hXbgDWy0kY3V2xTdKoyttFv2DXRXghhjIYN2_1cjvHE557T3znHNYivR5r-8Hia_JgC8TTxZYccPS2YJ_4dYyqX7Cf0E-9OfCyT1ozRh-LEakCfpzXCHw55Lo9Ib9nr3g-E7y7zhv1-uP9197V6_PHl293nxyo0RixVb2M0gLqNW932HVq0bYzBSCk1dMpulWpBSOh624ZGqi6qbSe1FV6A3-rY3LCP59xS_HREWtyYKOAwlG3nIzkwoNsSUITqLAx5JsrYu0NOo88nB8KtXN3eXbi6lasDcIVr8X24FHgKfugLhpDon9loq6TWRXd71mH57XPC7CgknEKBlzEsLs7pP00vnp2SUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17169021</pqid></control><display><type>article</type><title>Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tserpes, George ; Moutopoulos, Dimitrios K. ; Peristeraki, Panagiota ; Katselis, George ; Koutsikopoulos, Constantin</creator><creatorcontrib>Tserpes, George ; Moutopoulos, Dimitrios K. ; Peristeraki, Panagiota ; Katselis, George ; Koutsikopoulos, Constantin</creatorcontrib><description>We analyzed fisheries data collected in 2000 and 2001 from the Greek swordfish fishing fleets operating in the eastern Mediterranean, by means of machine-learning approaches, in order to define differences in exploitation patterns and fishing strategies. Based on their total annual catch, fishing vessels have been classified in three groups: low, medium and high producers. Decision-tree analysis revealed that group membership could be successfully predicted from the total number of working days per year, the vessel length, the type of gear used, the hook size and the number of hooks per set. Using the data of 2001 as a test data set and assuming that only the average catch of the most productive group was known, total production estimates for that year showed very little difference (7.92%) from the true values. These findings indicate that simple sampling schemes focusing on the high producers may be adequate for the examined fisheries. They also provide evidence that such methodological approaches could be useful for the cross-checking of fisheries estimates obtained through various sampling schemes.</description><identifier>ISSN: 0165-7836</identifier><identifier>EISSN: 1872-6763</identifier><identifier>DOI: 10.1016/j.fishres.2005.11.022</identifier><identifier>CODEN: FISRDJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Applied ecology ; Biological and medical sciences ; Exploitation and management of natural biological resources (hunting, fishing and exploited populations survey, etc.) ; Fishery ; Fundamental and applied biological sciences. Psychology ; Machine learning ; Marine ; Mediterranean ; Swordfish</subject><ispartof>Fisheries research, 2006-05, Vol.78 (2), p.196-202</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-f8dd71e69d469fbe8e89ddc722261b5845591021bf89c325bd54b2680a01a46d3</citedby><cites>FETCH-LOGICAL-c370t-f8dd71e69d469fbe8e89ddc722261b5845591021bf89c325bd54b2680a01a46d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fishres.2005.11.022$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17685266$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tserpes, George</creatorcontrib><creatorcontrib>Moutopoulos, Dimitrios K.</creatorcontrib><creatorcontrib>Peristeraki, Panagiota</creatorcontrib><creatorcontrib>Katselis, George</creatorcontrib><creatorcontrib>Koutsikopoulos, Constantin</creatorcontrib><title>Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches</title><title>Fisheries research</title><description>We analyzed fisheries data collected in 2000 and 2001 from the Greek swordfish fishing fleets operating in the eastern Mediterranean, by means of machine-learning approaches, in order to define differences in exploitation patterns and fishing strategies. Based on their total annual catch, fishing vessels have been classified in three groups: low, medium and high producers. Decision-tree analysis revealed that group membership could be successfully predicted from the total number of working days per year, the vessel length, the type of gear used, the hook size and the number of hooks per set. Using the data of 2001 as a test data set and assuming that only the average catch of the most productive group was known, total production estimates for that year showed very little difference (7.92%) from the true values. These findings indicate that simple sampling schemes focusing on the high producers may be adequate for the examined fisheries. They also provide evidence that such methodological approaches could be useful for the cross-checking of fisheries estimates obtained through various sampling schemes.</description><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Exploitation and management of natural biological resources (hunting, fishing and exploited populations survey, etc.)</subject><subject>Fishery</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Machine learning</subject><subject>Marine</subject><subject>Mediterranean</subject><subject>Swordfish</subject><issn>0165-7836</issn><issn>1872-6763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEtv1DAQxy1UJLaFj4DkC9wSPM76kVOFqhaQijgAZ8uxJ6xXeWw92aL99nW0K3Hk4rGs_2P8Y-w9iBoE6E_7uk-0y0i1FELVALWQ8hXbgDWy0kY3V2xTdKoyttFv2DXRXghhjIYN2_1cjvHE557T3znHNYivR5r-8Hia_JgC8TTxZYccPS2YJ_4dYyqX7Cf0E-9OfCyT1ozRh-LEakCfpzXCHw55Lo9Ib9nr3g-E7y7zhv1-uP9197V6_PHl293nxyo0RixVb2M0gLqNW932HVq0bYzBSCk1dMpulWpBSOh624ZGqi6qbSe1FV6A3-rY3LCP59xS_HREWtyYKOAwlG3nIzkwoNsSUITqLAx5JsrYu0NOo88nB8KtXN3eXbi6lasDcIVr8X24FHgKfugLhpDon9loq6TWRXd71mH57XPC7CgknEKBlzEsLs7pP00vnp2SUQ</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Tserpes, George</creator><creator>Moutopoulos, Dimitrios K.</creator><creator>Peristeraki, Panagiota</creator><creator>Katselis, George</creator><creator>Koutsikopoulos, Constantin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20060501</creationdate><title>Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches</title><author>Tserpes, George ; Moutopoulos, Dimitrios K. ; Peristeraki, Panagiota ; Katselis, George ; Koutsikopoulos, Constantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-f8dd71e69d469fbe8e89ddc722261b5845591021bf89c325bd54b2680a01a46d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Exploitation and management of natural biological resources (hunting, fishing and exploited populations survey, etc.)</topic><topic>Fishery</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Machine learning</topic><topic>Marine</topic><topic>Mediterranean</topic><topic>Swordfish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tserpes, George</creatorcontrib><creatorcontrib>Moutopoulos, Dimitrios K.</creatorcontrib><creatorcontrib>Peristeraki, Panagiota</creatorcontrib><creatorcontrib>Katselis, George</creatorcontrib><creatorcontrib>Koutsikopoulos, Constantin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Fisheries research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tserpes, George</au><au>Moutopoulos, Dimitrios K.</au><au>Peristeraki, Panagiota</au><au>Katselis, George</au><au>Koutsikopoulos, Constantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches</atitle><jtitle>Fisheries research</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>78</volume><issue>2</issue><spage>196</spage><epage>202</epage><pages>196-202</pages><issn>0165-7836</issn><eissn>1872-6763</eissn><coden>FISRDJ</coden><abstract>We analyzed fisheries data collected in 2000 and 2001 from the Greek swordfish fishing fleets operating in the eastern Mediterranean, by means of machine-learning approaches, in order to define differences in exploitation patterns and fishing strategies. Based on their total annual catch, fishing vessels have been classified in three groups: low, medium and high producers. Decision-tree analysis revealed that group membership could be successfully predicted from the total number of working days per year, the vessel length, the type of gear used, the hook size and the number of hooks per set. Using the data of 2001 as a test data set and assuming that only the average catch of the most productive group was known, total production estimates for that year showed very little difference (7.92%) from the true values. These findings indicate that simple sampling schemes focusing on the high producers may be adequate for the examined fisheries. They also provide evidence that such methodological approaches could be useful for the cross-checking of fisheries estimates obtained through various sampling schemes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fishres.2005.11.022</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-7836 |
ispartof | Fisheries research, 2006-05, Vol.78 (2), p.196-202 |
issn | 0165-7836 1872-6763 |
language | eng |
recordid | cdi_proquest_miscellaneous_17169021 |
source | Access via ScienceDirect (Elsevier) |
subjects | Animal, plant and microbial ecology Applied ecology Biological and medical sciences Exploitation and management of natural biological resources (hunting, fishing and exploited populations survey, etc.) Fishery Fundamental and applied biological sciences. Psychology Machine learning Marine Mediterranean Swordfish |
title | Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A40%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20swordfish%20fishing%20dynamics%20in%20the%20eastern%20Mediterranean%20by%20means%20of%20machine-learning%20approaches&rft.jtitle=Fisheries%20research&rft.au=Tserpes,%20George&rft.date=2006-05-01&rft.volume=78&rft.issue=2&rft.spage=196&rft.epage=202&rft.pages=196-202&rft.issn=0165-7836&rft.eissn=1872-6763&rft.coden=FISRDJ&rft_id=info:doi/10.1016/j.fishres.2005.11.022&rft_dat=%3Cproquest_cross%3E17169021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17169021&rft_id=info:pmid/&rft_els_id=S0165783606000373&rfr_iscdi=true |